Epitaxial Growth of γ -Al2O3 Insulator Films on Si by Molecular Beam Epitaxy Using an Al Solid Source and N2O Gas

1995 ◽  
Vol 401 ◽  
Author(s):  
H. Wado ◽  
T. Shimizu ◽  
K. Ohtani ◽  
Y. C. Jung ◽  
M. Ishida

AbstractHigh quality crystalline γ -Al2O3 films were epitaxially grown on Si(111) substrates at growth temperatures from 750 to 900°C by molecular beam epitaxy using an Al solid source and N2O gas. Very thin γ -Al2O3 films grown at a growth temperature of 850°C showed streaky reflection high-energy electron diffraction patterns. By in situ x-ray photoelectron spectroscopy measurements, carbon contamination, as is seen in the films grown with a Al(CH3)3 source, was not detected within the measurement sensitivity. The stoichiometry of the grown film was found to be similar to that of Al2O3. Growth rates of epitaxial γ -Al2O3 layers decreased with increasing growth temperatures. The predominant growth of the γ -Al2O3(111) crystal orientation was confirmed on Si(110) and Si(100) substrates.

2010 ◽  
Vol 1252 ◽  
Author(s):  
Md. Nurul Kabir Bhuiyan ◽  
Mariela Menghini ◽  
Christel Dieker ◽  
Jin Won Seo ◽  
Jean-Pierre Locquet ◽  
...  

AbstractDysprosium oxide (Dy2O3) films are grown epitaxially on high mobility Ge(100) substrates by molecular beam epitaxy system. Reflection high energy electron diffraction patterns and X-ray diffraction spectra show that single crystalline cubic Dy2O3 films are formed on Ge(100) substrates. The epitaxial-relationship is identified as Dy2O3 (110)║Ge(100) and Dy2O3 [001]║Ge[011]. Atomic force microscopy results show that the surface of the Dy2O3 film is uniform, flat and smooth with root mean square surface roughness of about 4.6Å. X-ray photoelectron spectroscopy including depth profiles confirms the composition of the films being close to Dy2O3. TEM measurements reveal a sharp, crystalline interface between the oxide and Ge.


MRS Advances ◽  
2017 ◽  
Vol 2 (3) ◽  
pp. 189-194
Author(s):  
Franck Natali ◽  
Joe Trodahl ◽  
Stéphane Vézian ◽  
Antoine Traverson ◽  
Benjamin Damilano ◽  
...  

ABSTRACTGdN/SmN based superlattices have been grown by molecular beam epitaxy. In-situ reflection high energy electron diffraction was used to evaluate the evolution of the epitaxial growth and the structural properties were assessed by ex-situ X-ray diffraction. Hall Effect and resistivity measurements as a function of the temperature establish that the superlattices are heavily n-type doped semiconductors and the electrical conduction resides in both REN layers, SmN and GdN.


2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 991-996
Author(s):  
M. Salvato ◽  
C. Attanasio ◽  
G. Carbone ◽  
T. Di Luccio ◽  
S. L. Prischepa ◽  
...  

High temperature superconducting multilayers have been obtained depositing Bi2Sr2CuO6+δ(2201) and ACuO2 layers, where A is Ca or Sr, by Molecular Beam Epitaxy (MBE) on MgO and SrTiO3 substrates. The samples, formed by a sequence of 2201/ACuO2 bilayers, have different thickness of ACuO2 layers while the thickness of the 2201 layers is kept constant. The surface structure of each layer has been monitored by in situ Reflection High Energy Electron Diffraction (RHEED) analysis which has confirmed a 2D nucleation growth. X-ray diffraction (XRD) analysis has been used to confirm that the layered structure has been obtained. Moreover, one-dimensional X-ray kinematic diffraction model has been developed to interpret the experimental data and to estimate the period of the multilayers. Resistive measurements have shown that the electrical properties of the samples strongly depend on the thickness of the ACuO2 layers.


1988 ◽  
Vol 128 ◽  
Author(s):  
Eric Chason ◽  
K. M. Horn ◽  
J. Y. Tsao ◽  
S. T. Picraux

ABSTRACTUsing in situ, real-time reflection high energy electron diffraction (RHEED), we have measured the evolution of Ge (001) surface morphology during simultaneous molecular beam epitaxy and Ar ion beam bombardment. Surprisingly, low-energy Ar ions during growth tend to smoothen the surface. Bombardment by the ion beam without growth roughens the surface, but the surface can be reversibly smoothened by restoring the growth beam. We have measured the effect of such “ion beam growth smoothening” above and below the critical temperature for intrinsic growth roughening. At all measured growth temperatures the surface initially smoothens, but below the critical roughening temperature the final surface morphology is rough whereas above this temperature the final morphology is smooth.


Author(s):  
Tung Hsu ◽  
G.S. Petrich ◽  
P. I. Cohen

Three GaAs( 100) samples, each grown on a differently misoriented GaAs( 100) substrate, were prepared using molecular beam epitaxy (MBE) and characterized by in situ reflection high energy electron diffraction (RHEED) and ex situ RHEED and reflection electron microscopy (REM): A: the substrate is 2° off the (100) toward [011] (A misorientation),B: the substrate is 2° off the (100) toward (B misorientation), andC: the substrate is within 0.1° of (100) (Fig. 1).The goals were to compare the effects of MBE growth and oxidation on the different types of steps formed on these surfaces. Understanding the processes involved in promoting ordering of terrace lengths, and reduction of meandering and step bunching is crucial to current attempts to fabricate quantum wire structures.Samples were prepared by chemically etching the substrates and then growing 0.2μm of GaAs at 600°C, at a rate of 0.4μm/h, and using a 3:1 As:Ga flux ratio. Shapes of the in situ RHEED spots were used to measure the step configuration while the oscillation of RHEED intensities was used to determine the thickness of the grown film.


Sign in / Sign up

Export Citation Format

Share Document