Massively Parallel Molecular Dynamics and Simulations for Many-Body Potentials

1995 ◽  
Vol 408 ◽  
Author(s):  
L. T. Wille ◽  
C. F. Cornwell ◽  
W. C. Morrey

AbstractWe discuss the implementation of classical molecular dynamics simulations on Single- Instruction Multiple-Data computers with two-dimensional mesh connectivity. Specific timing results are given for the MasPar MP-1, complemented by a general time complexity analysis. Our main interest is in simulations with a number of particles N that is comparable to the number of processors P. In particular, we discuss results for large Si-clusters with up to 2000 particles, using a Stillinger-Weber potential. Particular attention is paid to the problem of handling in an efficient way the calculation of the three-body potential and force.

2002 ◽  
Vol 13 (06) ◽  
pp. 759-769 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
LYNDA AMIROUCHE ◽  
LEILA ROUAIGUIA

We have simulated the gold deposition on arsenic and gallium terminated GaAs(001) surfaces at low and room temperatures. It has been found that gallium terminated surface is relatively less stable in comparison to the arsenic terminated surface. On the other hand, a single gold adatom on the surface has different characteristics than full coverage gold atoms on the surface; a single gold atom diffuses into the surface at room temperature. Simulations have been performed by considering classical molecular-dynamics technique using an empirical many-body potential energy function comprising two- and three-body atomic interactions.


2001 ◽  
Vol 12 (06) ◽  
pp. 865-870 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.


1989 ◽  
Vol 157 ◽  
Author(s):  
M. Kitabatake ◽  
P. Fons ◽  
J. E. Greene

ABSTRACTMolecular dynamics simulations, utilizing the Tersoff many-body potential, were used to investigate the effects of 10 eV Si atom bombardment of a (001)2×1 terminated Si lattice. The irradiation events were initiated at an array of points in the primitive surface unit cell. Each event was followed to determine kinetic energy redistribution in the lattice as a function of time, projectile and lattice atom trajectories, and the nature, number, and depth of residual defects. Dimer breaking, epitaxial growth, position exchange, and the formation of residual hexagonal and split interstitials were observed. There were no residual vacancies. Impact points leading to each of the above results clustered in distinctly different regions of the surface unit cell. Bulk interstitials were annealed out over time scales corresponding to monolayer deposition during Si MBE.


1990 ◽  
Vol 206 ◽  
Author(s):  
R.C. Mowrey ◽  
D.W. Brenner ◽  
B.I. Dunlap ◽  
J.W. Mintmire ◽  
C.T. White

ABSTRACTWe have performed molecular dynamics simulations using a recently developed empirical many-body potential energy function to study the collision of the C60 isomer buckmin-sterfullerene with a hydrogen-terminated diamond surface. The simulations indicate that the cluster can react with the surface and has a larger probability of gaining atoms from the surface than of losing atoms to the surface. We have investigated the dependence of the reaction probability on the initial center-of-mass translational velocity of the cluster. The structures and energy distributions of the product clusters have been determined. Both inelastically and reactively scattered clusters have large amounts of internal energy which suggests that gas-phase dissociation is likely.


2002 ◽  
Vol 13 (03) ◽  
pp. 367-373 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.


Open Physics ◽  
2011 ◽  
Vol 9 (2) ◽  
Author(s):  
Seyed Mahboobi ◽  
Ali Meghdari ◽  
Nader Jalili ◽  
Farshid Amiri

AbstractMolecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on stepped surfaces. Five surface forms are considered in the simulations. The system parts are made of pure transition metals and Sutton-Chen many-body potential is used as interatomic potential. The conditions which are subjected to change in the tests include: materials used for particles and substrate, and surface step conditions. In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Simulation results show the effect of the aforementioned working conditions on the particle behavior as well as changes in the pushing forces. Obtaining this sort of knowledge is highly beneficial for further experiments in order to be able to plan the conditions and routines which guarantee better success in the manipulation process.


Sign in / Sign up

Export Citation Format

Share Document