Atomistic Study of Boron-Doped Silicon

1995 ◽  
Vol 408 ◽  
Author(s):  
M. Fearn ◽  
J. H. Jefferson ◽  
D. G. Pettifor

AbstractAtomistic simulations using both tight-binding and density-functional approaches have been performed to investigate boron-related defects in silicon. In agreement with experiment, the boron interstitial is shown to be a negative- U center in the sense that its neutral charge state, with an associated Jahn-Teller distortion off the ideal tetrahedral site, is never the ground state for any value of the chemical potential in the gap. The possible consequences for an electron-assisted migration of the interstitial are discussed. We also find the boron substitutional defect to be a next-nearest neighbor of a silicon vacancy in agreement with EPR spectra.A semi-empirical tight-binding model of the boron-silicon system is validated by direct comparison with the accurate density-functional results and is then used to perform molecular dynamics simulations of boron diffusion at high temperatures. The mobility of the interstitial is found to be strongly charge-state dependent. Termination of the boron interstitial migration path by recombination with a silicon vacancy is shown to be a very likely process with a number of configurations having no barrier to capture when the boron is a near-neighbor of the vacancy.

2021 ◽  
Vol 7 (2) ◽  
pp. eabd4248
Author(s):  
Fengmiao Li ◽  
Yuting Zou ◽  
Myung-Geun Han ◽  
Kateryna Foyevtsova ◽  
Hyungki Shin ◽  
...  

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+. We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti–Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.


2021 ◽  
Vol 154 (16) ◽  
pp. 164115
Author(s):  
Rebecca K. Lindsey ◽  
Sorin Bastea ◽  
Nir Goldman ◽  
Laurence E. Fried

2014 ◽  
Vol 118 (29) ◽  
pp. 5520-5528 ◽  
Author(s):  
Sriram Goverapet Srinivasan ◽  
Nir Goldman ◽  
Isaac Tamblyn ◽  
Sebastien Hamel ◽  
Michael Gaus

1992 ◽  
Vol 247 ◽  
Author(s):  
J. W. Mintmire ◽  
D. H. Robertson ◽  
B. I. Dunlap ◽  
R. C. Mowrey ◽  
D. W. Brenner ◽  
...  

ABSTRACTRecent reports suggest that graphitic tubules with diameters on the order of fullerene diameters have been synthesized. Such small-diameter tubules should have electronic properties related to those of two-dimensional graphite. We demonstrate by comparison with results from a first-principles, self-consistent, all-electron Gaussian-orbital based local-density functional approach that an all-valence tight-binding model can be expected to give a reasonable description of the electronic states of these tubules. In analyzing both high-symmetry tubules and lower-symmetry chiral tubules, we see that a relatively high carrier density could be expected for many of these structures.


2018 ◽  
Vol 9 ◽  
pp. 1358-1369 ◽  
Author(s):  
Jun-Tong Ren ◽  
Hai-Feng Lü ◽  
Sha-Sha Ke ◽  
Yong Guo ◽  
Huai-Wu Zhang

We investigate the effect of three types of intrinsic disorder, including that in pairing energy, chemical potential, and hopping amplitude, on the transport properties through the superconducting nanowires with Majorana bound states (MBSs). The conductance and the noise Fano factor are calculated based on a tight-binding model by adopting a non-equilibrium Green’s function method. It is found that the disorder can effectively lead to a reduction in the conductance peak spacings and significantly suppress the peak height. Remarkably, for a longer nanowire, the zero-bias peak could be reproduced by weak disorder for a finite Majorana energy splitting. It is interesting that the shot noise provides a signature to discriminate whether the zero-bias peak is induced by Majorana zero mode or disorder. For Majorana zero mode, the noise Fano factor approaches zero in the low bias voltage limit due to the resonant Andreev tunneling. However, the Fano factor is finite in the case of a disorder-induced zero-bias peak.


Author(s):  
M.J. Kim ◽  
H. Ma ◽  
R.W. Carpenter ◽  
S.H. Lin ◽  
O.F. Sankey

Grain boundary (GB) structure determination at an atomic level by HREM had received increasing attention in recent years. However, models of grain boundary structure deduced from the experiment results are usually not unique, and they do not necessarily represent the equilibrium structure. A newly developed quantum-molecular-dynamics (QMD) method, which does not depend on any empirical potentials, can be used to test these models and find the equilibrium atomic structure through simulated quenching. The method employs an electronic structure tight-binding model based on density functional theory within the local density approximation and the nonlocal pseudopotential scheme, and is used to compute the total energy and atomic forces for a variety of covalent materials. In the present study, this QMD method, coupled with image simulation, was used to predict the relaxed atomic configuration for the Σ=13 (510), [001] tilt grain boundary in Si.


2013 ◽  
Vol 117 (15) ◽  
pp. 7885-7894 ◽  
Author(s):  
Nir Goldman ◽  
Sriram Goverapet Srinivasan ◽  
Sebastien Hamel ◽  
Laurence E. Fried ◽  
Michael Gaus ◽  
...  

2007 ◽  
Vol 1017 ◽  
Author(s):  
T. Hammerschmidt ◽  
M. A. Migliorato ◽  
D. Powell ◽  
A. G. Cullis ◽  
G. P. Srivastava

AbstractWe propose a tight-binding model for the polarization that considers direct and dipole contributions and employs microscopic quantities that can be calculated by first-principles methods, e.g. by employing Density Functional Theory (DFT). Applying our model to InxGa1-xAs alloys allows us to settle discrepancies between the values of e14 as obtained from experiments and from linear interpolations between the values of InAs and GaAs. Our calculated piezoelectric coefficient is in very good agreement with photo current measurements of InAs/GaAs(111) quantum well samples.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyu Won Lee ◽  
Cheol Eui Lee

AbstractOur density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.


Sign in / Sign up

Export Citation Format

Share Document