Surface Passivation of Gaas-Based Phemt by Hydrogen Ion Irradiation

1996 ◽  
Vol 421 ◽  
Author(s):  
Song S. Shi ◽  
Ying-Lan Chang ◽  
Evelyn L. Hu ◽  
Julia J. Brown

AbstractSurface passivation is a key issue in compound semiconductor device technology. The high density of surface states on unpassivated surfaces can lead to excessive non-radiative recombination at the surface, affecting optical devices, or provide leakage and low-field breakdown in electronic devices. Our previous studies on low energy, low-dose hydrogen ion treatment carried out at room temperature showed long-term improvement in the optical properties of near surface quantum wells. We have accordingly applied this process to GaAs-based pseudomorphic HEMTs (PHEMT) in order to improve their power performance. Although our process is designed so that the hydrogen reactions are confined to the surface of the substrate, a critical factor in the success of this treatment is the extent of in-diffusion of the hydrogen, and the possibility of dopant passivation. PHEMT structures were hydrogenated at various conditions and both Hall mobility and carrier density were monitored. For a low hydrogen ion dose (3 × 1016 cm−2) at 80 eV energy, some degradation of Hall mobility and carrier density was noted after the treatment, but full recovery of both parameters was achieved after a 400°C thermal anneal. Much higher hydrogen doses resulted in severe degradation of mobility and carrier density, which were only partially recovered after thermal anneal. Measurements on actual PHEMT devices showed an approximately 15% decrease in the transconductance, and in addition, a 60% decrease in the gate-to-drain leakage current after irradiation with 80 eV hydrogen ions at a dose of 3 × 1016 cm−2. The decrease of the leakage current indicates that passivation is taking place. The decrease of the transconductance suggests that hydrogen may be diffusing into the regions of the dopants. Optimization of the hydrogenation parameters should allow leakage reduction without sacrifice of transconductance.

2002 ◽  
Vol 743 ◽  
Author(s):  
Hideki Hasegawa ◽  
Tamotsu Hashizume

ABSTRACTThis paper reviews the authors′ recent efforts to clarify the properties of electronic states near surfaces of GaN and AlGaN by using variousin-situandex-situcharacterization techniques, including UHV contact-less C-V, photoluminescence surface state spectroscopy (PLS3), cathode luminescence in-depth spectroscopy (CLIS),and gateless FET techniques that have been developed by the authors’ group.As a result, a model including a U-shaped surface state continuum, having a particular charge neutrality level, combined with frequent appearance of near-surface N-vacancy related deep donor states having a discrete level at Ec - 0.37eV is proposed as a unified model that can explain large gate leakage currents and current collapse in AlGaN/GaN HFETs. Hydrogen plasma treatment and SiO2deposition increase N-vacancy related deep donors. Reasonably good surface passivation can be achieved by ECR-plasma SiNx films and by ECR-plasma oxidized Al2O3films both combined with ECR N2plasma treatment.


1990 ◽  
Vol 41 (18) ◽  
pp. 12945-12948 ◽  
Author(s):  
J. M. Moison ◽  
K. Elcess ◽  
F. Houzay ◽  
J. Y. Marzin ◽  
J. M. Gérard ◽  
...  

1993 ◽  
Author(s):  
Andrea Frova ◽  
V. Emiliani ◽  
Mario Capizzi ◽  
B. Bonanni ◽  
Ying-Lan Chang ◽  
...  

2019 ◽  
Author(s):  
Pawan Tyagi

Sulfur interaction with GaAs can reduce the harmful effect of surface states on recombination attributes. Apart from surface passivation, study of sulfur bonding on GaAs is also important for developing novel molecular electronics and molecular spintronics devices, where a molecular channel can be connected to at least one GaAs surface via thiol functional group. Excess thiol functional groups that are not involved in making molecular device channels can serve as the passivants to quench surface states. However, the primary challenge lies in increasing the stability and effectiveness of the sulfur passivated GaAs. We have investigated the effect of single and double step surface passivation of n-GaAs(100) by using the sulfide and fluoride ions. Our single-step passivation involved the use of sulfide and fluoride ions individually. However, the two kinds of double-step passivations were performed by treating the n-GaAs surface. In the first approach GaAs surface was firstly treated with sulfide ions and secondly with fluoride ions, respectively. In the second double step approach GaAs surface was first treated with fluoride ions followed by sulfide ions, respectively. Sulfidation was conducted using the nonaqueous solution of sodium sulfide salt. Whereas the passivation steps with fluoride ion was performed with the aqueous solution of ammonium fluoride. Both sulfidation and fluoridation steps were performed either by dipping the GaAs sample in the desired ionic solution or electrochemically. Photoluminescence was conducted to characterize the relative changes in surface recombination velocity due to the single and double step surface passivation. Photoluminescence study showed that the double-step chemical treatment where GaAs was first treated with fluoride ions followed by the sulfide ions yielded the highest improvement. The time vs. photoluminescence study showed that this double-step passivation exhibited lower degradation rate as compared to widely discussed sulfide ion passivated GaAs surface. We also conducted surface elemental analysis using Rutherford Back Scattering to decipher the near surface chemical changes due to the four passivation methodologies we adopted. The double-step passivations affected the shallower region near GaAs surface as compared to the single step passivations.


2007 ◽  
Vol 309 (1) ◽  
pp. 18-24 ◽  
Author(s):  
A. Aierken ◽  
T. Hakkarainen ◽  
J. Tiilikainen ◽  
M. Mattila ◽  
J. Riikonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document