Near-surface GaAs/Ga0.7Al0.3As quantum wells: Interaction with the surface states

1990 ◽  
Vol 41 (18) ◽  
pp. 12945-12948 ◽  
Author(s):  
J. M. Moison ◽  
K. Elcess ◽  
F. Houzay ◽  
J. Y. Marzin ◽  
J. M. Gérard ◽  
...  
1996 ◽  
Vol 421 ◽  
Author(s):  
Song S. Shi ◽  
Ying-Lan Chang ◽  
Evelyn L. Hu ◽  
Julia J. Brown

AbstractSurface passivation is a key issue in compound semiconductor device technology. The high density of surface states on unpassivated surfaces can lead to excessive non-radiative recombination at the surface, affecting optical devices, or provide leakage and low-field breakdown in electronic devices. Our previous studies on low energy, low-dose hydrogen ion treatment carried out at room temperature showed long-term improvement in the optical properties of near surface quantum wells. We have accordingly applied this process to GaAs-based pseudomorphic HEMTs (PHEMT) in order to improve their power performance. Although our process is designed so that the hydrogen reactions are confined to the surface of the substrate, a critical factor in the success of this treatment is the extent of in-diffusion of the hydrogen, and the possibility of dopant passivation. PHEMT structures were hydrogenated at various conditions and both Hall mobility and carrier density were monitored. For a low hydrogen ion dose (3 × 1016 cm−2) at 80 eV energy, some degradation of Hall mobility and carrier density was noted after the treatment, but full recovery of both parameters was achieved after a 400°C thermal anneal. Much higher hydrogen doses resulted in severe degradation of mobility and carrier density, which were only partially recovered after thermal anneal. Measurements on actual PHEMT devices showed an approximately 15% decrease in the transconductance, and in addition, a 60% decrease in the gate-to-drain leakage current after irradiation with 80 eV hydrogen ions at a dose of 3 × 1016 cm−2. The decrease of the leakage current indicates that passivation is taking place. The decrease of the transconductance suggests that hydrogen may be diffusing into the regions of the dopants. Optimization of the hydrogenation parameters should allow leakage reduction without sacrifice of transconductance.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Joon Sue Lee ◽  
Borzoyeh Shojaei ◽  
Mihir Pendharkar ◽  
Mayer Feldman ◽  
Kunal Mukherjee ◽  
...  

2001 ◽  
Vol 15 (17n19) ◽  
pp. 683-687
Author(s):  
A. SILVA-CASTILLO ◽  
F. PEREZ-RODRIGUEZ

We have applied the 45° reflectometry for the first time to study exciton-polaritons in quantum wells. The 45° reflectometry is a new polarization-modulation technique, which is based on the measurement of the difference [Formula: see text] between the p-polarization reflectivity (Rp) and the squared s-polarization reflectivity [Formula: see text] at an angle of incidence of 45°. We show that [Formula: see text] spectra may provide qualitatively new information on the exciton-polariton modes in a quantum well. These optical spectra turn out to be very sensitive to the zeros of the dielectric function along the quantum-well growth direction and, therefore, allow to identify the resonances associated with the Z exciton-polariton mode. We demonstrate that 45° reflectometry could be a powerful tool for studying Z exciton-polariton modes in near-surface quantum wells, which are difficult to observe in simple spectra of reflectivity Rp


1973 ◽  
Vol 34 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Vidal Emmanuel Godwin ◽  
Wayne E. Tefft

2002 ◽  
Vol 743 ◽  
Author(s):  
Hideki Hasegawa ◽  
Tamotsu Hashizume

ABSTRACTThis paper reviews the authors′ recent efforts to clarify the properties of electronic states near surfaces of GaN and AlGaN by using variousin-situandex-situcharacterization techniques, including UHV contact-less C-V, photoluminescence surface state spectroscopy (PLS3), cathode luminescence in-depth spectroscopy (CLIS),and gateless FET techniques that have been developed by the authors’ group.As a result, a model including a U-shaped surface state continuum, having a particular charge neutrality level, combined with frequent appearance of near-surface N-vacancy related deep donor states having a discrete level at Ec - 0.37eV is proposed as a unified model that can explain large gate leakage currents and current collapse in AlGaN/GaN HFETs. Hydrogen plasma treatment and SiO2deposition increase N-vacancy related deep donors. Reasonably good surface passivation can be achieved by ECR-plasma SiNx films and by ECR-plasma oxidized Al2O3films both combined with ECR N2plasma treatment.


2019 ◽  
Vol 970 ◽  
pp. 276-282
Author(s):  
Yury Borodin ◽  
Anastasia Mantina

Superlattice formation in thin layers of oxidizing crystals and the effect of near-surface proton saturation on structure ordering, formation and periodical distribution of quantum wells have been discussed. The paper shows, it is necessary to develop non-Euclidean approach to the crystal’s internal geometry and consider, in consecutive order, the question of the four-dimentional Riemannian space into three-dimentional Eucliden space interpretation (RE interpretation).


1996 ◽  
Vol 101 (2-3) ◽  
pp. 113-117 ◽  
Author(s):  
Yao Liu ◽  
Xu-Rui Xiao ◽  
Xue-Ping Li ◽  
Zhong-Ying Xu ◽  
Zhi-Liang Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document