Mechanical and Tribological Properties of Chromium-Nitrogen Films Deposited by Ion Beam Assisted Deposition

1996 ◽  
Vol 438 ◽  
Author(s):  
E. J. Tobin ◽  
F. Namavar ◽  
H. F. Karimy ◽  
C. Colerico-Stenstrom ◽  
R. J. Bricault ◽  
...  

AbstractMechanical and tribological properties of chromium-nitrogen films deposited by ion beam assisted deposition (IBAD) were investigated. The films were deposited reactively, i.e., via chromium evaporation with concurrent nitrogen ion beam bombardment, on stainless steel substrates at low deposition temperatures (<200°C). Two primary deposition regimes, with differing Cr/N atom-to-ion arrival ratios, were investigated: approximately 0.8–1.0 and 2.5–3.0. Rutherford Backscattering Spectroscopic analysis showed the lower arrival ratio films to be essentially stoichiometric CrN, whereas films deposited at higher arrival ratios were Cr-rich with Cr/N ratios of about 3:1. Both films were fine grained polycrystalline (typically 5–20 nanometer crystal dimension). The stoichiometric films were approximately two times harder than the Cr-rich films., based on nanohardness indentation measurements, and possessed higher residual stress levels. Both film types substantially improved the wear resistance of stainless steel disks, based on the results of ball-ondisk wear tests against ruby balls. The best performance was obtained with Cr-rich films, which exhibited a very low wear rate and lower friction than either the stoichiometric film or the uncoated steel.

Vacuum ◽  
2003 ◽  
Vol 70 (2-3) ◽  
pp. 411-416 ◽  
Author(s):  
P. Budzynski ◽  
P. Tarkowski ◽  
P. Żukowski ◽  
K. Kiszczak ◽  
W. Kasietczuk

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Petr Vlcak ◽  
Frantisek Cerny ◽  
Zdenek Tolde ◽  
Josef Sepitka ◽  
Ivan Gregora ◽  
...  

Mechanical and tribological properties of the thin carbon film with tungsten interlayer were investigated. The carbon film (130 nm) and the tungsten interlayer (20 nm) were prepared by ion beam assisted deposition (IBAD) method. Both layers were electron beam evaporated and were simultaneously irradiated by the beam of argon (Ar) or nitrogen (N) ions with energy of 700 eV. Mechanical properties of the thin carbon film with tungsten interlayer were investigated by the nanoindentation method. Concerning tribological properties the coefficient of friction was investigated by means of pin on disc tribometer. Phase composition was investigated by X-ray diffraction method (XRD), and bonding characterization of carbon thin film was characterized by Raman spectroscopy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Petr Vlcak ◽  
Ivan Jirka

The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.


Sign in / Sign up

Export Citation Format

Share Document