On the Accuracy of Uranium-Series Dating: a Comparison with a Known Matrix Diffusion Case

1996 ◽  
Vol 465 ◽  
Author(s):  
K. Rasilainen ◽  
J. Suksi

ABSTRACTThe accuracy of uranium-series dating was studied quantitatively using the natural long-lived decay chains 4n+2 and 4n+3. An unusually well-bounded matrix diffusion case was used as the reference for USD simulations. The simulations applied the traditional closed and open system models, as well as detailed multistage models that incorporated the known accumulation history of the decay chain members. The results show clearly the improved accuracy and consistency in dating with detailed mass flow information.

2008 ◽  
Vol 104 (11/12) ◽  
Author(s):  
J.C. Vogel ◽  
M.A. Geyh

The radiometric dating of calcrete is often problematical because impurities and open system conditions affect the apparent ages obtained. By applying both radiocarbon and uranium-series dating to calcrete in colluvium, it is shown that such conditions can be identified. In correlation with the stratigraphy, it is found that partial recrystallization severely decreases the radiocarbon ages of the upslope and shallower samples further down, whereas incorporation of limestone fragments from bedrock significantly increases the apparent ages of some of the uranium-series samples. It is concluded that the hillslope calcrete at the study site near Sede Beker in the Negev Desert, Israel, mainly developed shortly after 40 kyr ago, at a time when the Jordan Valley was being inundated to form the fossil Lake Lisan. Since their formation would have required higher rainfall than today, the results provide further evidence that the whole region was experiencing an increase in precipitation.


1997 ◽  
Vol 506 ◽  
Author(s):  
Kari Rasilainen ◽  
Juhani Suksi ◽  
Antero Lindberg

Extended AbstractGeological formations are being considered as host media for nuclear waste disposal. The occurrence of natural U in rocks provides a possibility to test the radionuclide migration models used in safety studies of the disposal over comparable time periods. Here we study U accumulation into boulders as a process analogue for matrix diffusion; the boulders were found in glacial till in Hämeenlinna, southern Finland. Based on the glacial history of the site, matrix diffusion simulations, and independent U-series disequilibria (USD) dating, the U accumulation was interpreted to originate from the end stage of the latest glaciation, i.e. the system age is about 10 000 years1,2. The known time scale offers a rare opportunity for quantitative model testing; normally the time scale is difficult to determine for a single process in a natural analogue.The U accumulation was earlier1,2 interpreted to be due to matrix diffusion and sorption. The postulated accumulation history consists of short in-diffusion and out-diffusion stages, as well as a longer chain decay stage. The in-diffusion was caused by U-rich waters discharging on the boulders at the end stage of the glaciation. The subsequent partial out-diffusion represents the period the boulders were temporarily submerged in the Yoldia sea during the early stage of the Baltic Sea. The final isolated radioactive chain decay stage began when the boulders, and their surroundings, rose above the sea level due to land uplift.In this paper we report the first radiochemical results of a new larger boulder from the same area as the one studied earlier1; qualitatively, also the U distribution appears to be the same. Due to the larger dimensions, we can sample the inner zone of the boulder which matrix diffusion can not have reached within the postulated time, i.e. the state of the boulder before the U accumulation. The large amount of sample material containing almost only the recently accumulated U provides an opportunity to experimentally approach the kinetics of U fixation in situ. Understanding the long-term U fixation is essential in natural analogue studies, because the matrix diffusion model only has fast reversible adsorption (based on Kd) as the fixation process. Attempts to separate and quantify sorbed U in natural analogues have been reported elsewhere3.


1992 ◽  
Vol 129 (3) ◽  
pp. 307-317 ◽  
Author(s):  
J. A. Webb ◽  
D. Fabel ◽  
B. L. Finlayson ◽  
M. Ellaway ◽  
Li Shu ◽  
...  

AbstractDetailed mapping of surface and underground karst features at Buchan, in eastern Victoria, has shown that the three river terraces along the Buchan River can be correlated with three levels of epiphreatic development in the nearby caves. Each level represents a stillstand in the denudational history of the area. Uranium series dating of speleothems and palaeomagnetic studies of cave sediments indicate that all three stilistands are more than 730 ka old. The periods of incision separating the stillstands were probably the result of active tectonic uplift. This contrasts with some northern parts of the Southeastern Highlands, which have been stable since the Eocene. The overall amount of incision and uplift at Buchan is small, indicating that the majority of scarp retreat in this section of the highlands must have occurred earlier. The denudation history of the Buchan area over the last 730 ka has seen only 2–3 m of incision, despite the major climatic and sea-level changes that have occurred in that time. Whereas most karst landscapes in the Northern Hemisphere have been extensively modified during the late Pleistocene, the Buchan karst was little affected, and its geomorphology has an older origin.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd4648
Author(s):  
Adam Brumm ◽  
Adhi Agus Oktaviana ◽  
Basran Burhan ◽  
Budianto Hakim ◽  
Rustan Lebe ◽  
...  

Indonesia harbors some of the oldest known surviving cave art. Previously, the earliest dated rock art from this region was a figurative painting of a Sulawesi warty pig (Sus celebensis). This image from Leang Bulu’ Sipong 4 in the limestone karsts of Maros-Pangkep, South Sulawesi, was created at least 43,900 years ago (43.9 ka) based on Uranium-series dating. Here, we report the Uranium-series dating of two figurative cave paintings of Sulawesi warty pigs recently discovered in the same karst area. The oldest, with a minimum age of 45.5 ka, is from Leang Tedongnge. The second image, from Leang Balangajia 1, dates to at least 32 ka. To our knowledge, the animal painting from Leang Tedongnge is the earliest known representational work of art in the world. There is no reason to suppose, however, that this early rock art is a unique example in Island Southeast Asia or the wider region.


Sign in / Sign up

Export Citation Format

Share Document