Metal-ZnO Interfaces Studied by High Resolution Transmission Electron Microscopy

1996 ◽  
Vol 466 ◽  
Author(s):  
J.Th.M. De Hosson ◽  
W. P. Vellinga ◽  
H. B. Groen ◽  
B. J. Kooi

ABSTRACTThis paper reports on investigations of Ag-ZnO and Cu-ZnO interfaces, produced by internal oxidation. ZnO precipitates with the wurtzite structure were found showing mainly one orientation relationship (OR) with the matrix. However, closely related ORs were found, rotated by small angles from that orientation relation. The atomic structure of several interfaces surrounding these precipitates was studied and compared using high resolution transmission electron microscopy. This paper focuses on interfaces between low index facets of ZnO and vicinal planes of Ag. These interfaces clearly show relaxations. An interpretation of these relaxations in terms of dissociation of partial dislocations at the interface is put forward.

1998 ◽  
Vol 13 (4) ◽  
pp. 974-978 ◽  
Author(s):  
Seong-Hyeon Hong ◽  
Naesung Lee ◽  
Altaf H. Carim ◽  
Gary L. Messing

Interfacial precipitation in sol-gel derived, titania-doped diphasic mullite gels was investigated using conventional and high resolution transmission electron microscopy. Rutile, anatase, and brookite precipitated on the interface between {110} planes of mullite and glass pockets in the sintered body. The formation of brookite may be attributable to the Si- and Al-rich environment during precipitation. Each polymorph of titania has a unique morphology and orientation relationship with mullite. Brookite exhibits a truncated pill box shape, and anatase displays a vermicular morphology. Quenching experiments suggest that the precipitates grow and undergo phase transformations during cooling.


2015 ◽  
Vol 33 (6) ◽  
pp. 395-401 ◽  
Author(s):  
Ramasis Goswami

AbstractTransmission electron microscopy (TEM) was employed to investigate the dissolution behavior of nanocrystalline grain boundary T1 precipitates in Al-3Cu-2Li. These grain boundary T1 plates exhibit an orientation relation with matrix, with the (1-11)α-Al parallel to (0001)T1 and [022]α-Al parallel to [10-10]T1, which is similar to the orientation relationship of T1 plates formed within grains. TEM studies showed that these grain boundary T1 plates react readily in moist air. As a result of the localized dissolution, the Cu-rich clusters form onto T1, which is consistent with the localized dissolution behavior observed in nanocrystalline S phase in Al-Cu-Mg.


2018 ◽  
Vol 941 ◽  
pp. 1613-1617 ◽  
Author(s):  
Li Jun Peng ◽  
Xu Jun Mi ◽  
Hao Feng Xie ◽  
Yang Yu ◽  
Guo Jie Huang ◽  
...  

The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.


2009 ◽  
Vol 24 (1) ◽  
pp. 192-197 ◽  
Author(s):  
G.M. Cheng ◽  
Y.X. Tian ◽  
L.L. He

The orientation relationship (OR) and the interfacial structure between Nb solid solution (Nbss) precipitates and α-Nb5Si3 intermetallics have been investigated by transmission electron microscopy (TEM). The OR between Nbss and α-Nb5Si3 was determined by selected-area electron diffraction analyses as (222)Nb//(002)α and . High-resolution TEM images of the Nbss/α-Nb5Si3 interface were presented. Steps existed at the interface that acted as centers of stress concentration and released the distortion of lattices to decrease the interfacial energy. In addition, the interfacial models were proposed based on the observed OR to describe the atomic matching of the interface. The distribution of alloying elements at the Nbss/α-Nb5Si3 interface has also been investigated, and Hf was enriched at the interface to strengthen the grain boundary.


2011 ◽  
Vol 189-193 ◽  
pp. 1036-1039
Author(s):  
Jing Ling Ma ◽  
Jiu Ba Wen ◽  
Yan Fu Yan

The precipitates of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt %) anode alloy were studied by scanning electron microscopy, X-ray microanalysis, high resolution transmission electron microscopy and selected area electron diffraction analyses in the present work. The results show that the alloy mainly contains hexagonal structure MgZn2 and tetragonal structure Al2CeZn2 precipitates. From high resolution transmission electron microscopy and selected area electron diffraction, aluminium, Al2CeZn2 and MgZn2 phases have [0 1 -1]Al|| [1 -10]Al2CeZn2|| [-1 1 0 1]MgZn2orientation relation, and Al2CeZn2 and MgZn2 phases have the [0 2 -1]Al2CeZn2|| [0 1 -10]MgZn2orientation relation.


Sign in / Sign up

Export Citation Format

Share Document