Theory of Ga, N and H terminated GaN (0001)/(0001) surfaces

1997 ◽  
Vol 482 ◽  
Author(s):  
J. Eisner ◽  
M. Haugk ◽  
R. Gutierrez ◽  
Th. Frauenheim

AbstractWe present a theoretical study of atomic structures, electrical properties and formation energies for a variety of possible reconstructions with 1×1 and 2×2 periodicity of the GaN(0001) and (0001) surfaces. We find that during MBE growth in the (0001) direction 2×2 structures become stable under N rich growth conditions while Ga rich environment should yield structures with 1×1 periodicity. Considering MBE growth on (0001) surfaces, among the investigated structures only those with 1×1 periodicity are predicted to be stable. During MOCVD growth, where H terminated surfaces may occur, only structures with lx1 periodicity are found to be stable for both growth directions.

1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


1983 ◽  
Vol 103 (4) ◽  
pp. 507-522 ◽  
Author(s):  
Mitsuo Kawato ◽  
Nakaakira Tsukahara

2009 ◽  
Vol 1183 ◽  
Author(s):  
Yôtarõ Nishio ◽  
Kôichirô Ishikawa ◽  
Shinji Kuroda ◽  
Masanori Mitome ◽  
Yoshio Bando

AbstractThe correlation between the Cr aggregation and magnetic properties are investigated for the series of Zn1-xCrxTe films grown by MBE with a systematic variation of growth conditions. Structural and chemical analyses using TEM and energy-dispersive X-ray spectroscopy (EDS) reveal that the crystallinity and the Cr distribution change significantly with the substrate temperature during the MBE growth. For a relatively low average Cr content x ≅ 0.05, it is found that the crystal quality is improved with the increase of the substrate temperature. For a higher average Cr content x ≅ 0.2, the shape of Cr-rich regions is transformed from isolated clusters into one-dimensional nanocolumns with the increase of the substrate temperature. The direction of the nanocolumn formation changes depending on the crystallographic orientation of the grown films. In the magnetization measurements, anisotropic magnetic properties are observed in the films in which Cr-rich nanocolumns are formed in the vertical direction, depending on the relation between the direction of the nanocolumns and the applied magnetic fields.


1993 ◽  
Vol 312 ◽  
Author(s):  
Richard Mirin ◽  
Mohan Krishnamurthy ◽  
James Ibbetson ◽  
Arthur Gossard ◽  
John English ◽  
...  

AbstractHigh temperature (≥ 650°C) MBE growth of AlAs and AlAs/GaAs superlattices on (100) GaAs is shown to lead to quasi-periodic facetting. We demonstrate that the facetting is only due to the AlAs layers, and growth of GaAs on top of the facets replanarizes the surface. We show that the roughness between the AlAs and GaAs layers increases with increasing number of periods in the superlattice. The roughness increases to form distinct facets, which rapidly grow at the expense of the (100) surface. Within a few periods of the initial facet formation, the (100) surface has disappeared and only the facet planes are visible in cross-sectional transmission electron micrographs. At this point, the reflection high-energy electron diffraction pattern is spotty, and the specular spot is a distinct chevron. We also show that the facetting becomes more pronounced as the substrate temperature is increased from 620°C to 710°C. Atomic force micrographs show that the valleys enclosed by the facets can be several microns long, but they may also be only several nanometers long, depending on the growth conditions.


1996 ◽  
Vol 423 ◽  
Author(s):  
J. C. Roberts ◽  
F. G. Mcintosh ◽  
M. Aumer ◽  
V. Joshkin ◽  
K. S. Boutros ◽  
...  

AbstractThe emission wavelength of the InxGa1−xN ternary system can span from the near ultraviolet through red regions of the visible spectrum. High quality double heterostructures with these InxGa1−xN active layers are essential in the development of efficient optoelectronic devices such as high performance light emitting diodes and laser diodes. We will report on the MOCVD growth and characterization of thick and thin InGaN films. Thick InxGa1−xN films with values of x up to 0.40 have been deposited and their photoluminescence (PL) spectra measured. AlGaN/InGaN/AlGaN double heterostructures (DHs) have been grown that exhibit PL emission in the violet, blue, green and yellow spectral regions, depending on the growth conditions of the thin InGaN active layer. Preliminary results of an AllnGaN/InGaN/AllnGaN DH, with the potential of realizing a near-lattice matched structure, will also be presented.


2000 ◽  
Vol 367 (1-2) ◽  
pp. 210-215 ◽  
Author(s):  
S Maćkowski ◽  
G Karczewski ◽  
F Kyrychenko ◽  
T Wojtowicz ◽  
J Kossut

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1051 ◽  
Author(s):  
Raitis Sondors ◽  
Jelena Kosmaca ◽  
Gunta Kunakova ◽  
Liga Jasulaneca ◽  
Matiss Martins Ramma ◽  
...  

Size distribution, Young’s moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young’s moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.


Sign in / Sign up

Export Citation Format

Share Document