Fano Factor Determination For CZT

1997 ◽  
Vol 487 ◽  
Author(s):  
R. H. Redus ◽  
J. A. Pantazis ◽  
A. C. Huber ◽  
V. T. Jordanov ◽  
J. F. Butler ◽  
...  

AbstractContinued improvements in the manufacturing of Cd1−xZnxTe (CZT) material have resulted in a practical thermoelectrically cooled X-ray and gamma-ray detector of very high energy resolution. A high resolution spectroscopy system was used to measure the Fano factor in CZT at temperatures down to -40°C. The best resolution of the 5.9 keV 55Fe peak was measured to be 188 eV FWHM, while the best resolution of the 59.5 keV 241Am peak was measured to be 482 eV FWHM. The minimum measured Fano factor was 0.082, with several measurements yielding a value of 0.089±0.005. With a resolution of 4.2 keV FWHM for the 662 keV peak of 137Cs, these detectors demonstrate excellent performance in detecting X-rays and gamma rays.

1991 ◽  
Vol 24 (6) ◽  
pp. 1042-1050 ◽  
Author(s):  
E. Burkel ◽  
B. Dorner ◽  
Th. Illini ◽  
J. Peisl

Very high-energy resolution measurements using X-rays can be achieved by extreme backreflection (Bragg angle close to 90°) from perfect crystals. This technique, combined with the high intensity of X-rays emitted by synchrotron-radiation sources, allowed the development of the instrument INELAX for inelastic scattering experiments. The principles and test results are discussed.


2014 ◽  
Vol 788 (2) ◽  
pp. 165 ◽  
Author(s):  
K. Hada ◽  
M. Giroletti ◽  
M. Kino ◽  
G. Giovannini ◽  
F. D'Ammando ◽  
...  

2008 ◽  
Author(s):  
Diego F. Torres ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
Frank Rieger

2014 ◽  
Vol 28 ◽  
pp. 1460169 ◽  
Author(s):  
DMITRY KHANGULYAN ◽  
SERGEY V. BOGOVALOV ◽  
FELIX A. AHARONIAN

Observations of the binary pulsar PSR B1259-63/LS2883 in the high energy and very high energy domains have revealed a few quite unusual features. One of the most puzzling phenomena is the bright GeV flare detected with Fermi/LAT in 2011 January, approximately one month after periastron passage. Since the maximum luminosity in the high energy band during the flare nearly achieved the level of the pulsar spin-down energy losses, it is likely that the particles, responsible for this emission component, had a strongly anisotropic distribution, which resulted in the emission enhancement. One of the most prolific scenarios for such an emission enhancement is the Doppler boosting, which is realized in sources with relativistic motions. Interestingly, a number of hydrodynamical simulations have predicted a formation of highly relativistic outflows in binary pulsar systems, therefore scenarios, involving relativistic boosting, are very natural for these systems. However a more detailed analysis of such a possibility, presented in this study, reveals certain limitations which put strict constraints on the maximum luminosity achievable in this scenario. These constraints render the "Doppler boosting" scenario to be less feasible, especially for the synchrotron models.


Sign in / Sign up

Export Citation Format

Share Document