High Performance A–Si Solar Cells and Narrow Bandgap Materials

1985 ◽  
Vol 49 ◽  
Author(s):  
Shoichi Nakano ◽  
Yasuo Kishi ◽  
Michitoshi Ohnishi ◽  
Shinya Tsuda ◽  
Hisashi Shibuya ◽  
...  

AbstractHigh performance a-Si solar cells were developed. A conversion efficiency of 11.5% was achieved for a textured TCO/p-SiC/in/Ag structure with a size of 1 cm2 using the high quality i-layer fabricated by a new consecutive, separated reaction chamber apparatus. A conversion efficiency of 9.0% was obtained with a size of 10cm × 10cm. A high quality a-SiGe:H:F, which is a new narrow bandgap material for a-Si solar cells, was fabricated by a glow discharge decomposition of SiF4 + GeF4 + H2.A photo-CVD method was investigated in order to improve the interface properties of a–Si solar cells. A conversion efficiency of 11.0% was obtained with a solar cell in which the p-layer is fabricated by the photo-CVD method. a-SiGe:H films were fabricated by the photo-CVD method for the first time as a narrow bandgap material for multi-bandgap a-Si solar cells.

1986 ◽  
Vol 70 ◽  
Author(s):  
Shoichi Nakano ◽  
Shinya Tsuda ◽  
Hisaki Tarui ◽  
Tsuyoshi Takahama ◽  
Hisao Haku ◽  
...  

ABSTRACTAs a new preparation method for high-quality a-Si films, we have developed the super chamber, a separated UHV reaction chamber system. A low impurity concentration and excellent film properties were obtained by the super chamber. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method.As a new material, amorphous superlattice structure films were fabricated by the photo-CVD method for the first time. Quantization effects and low damage to the interfaces were observed. Superlattice structure p-layer a-Si solar cells were fabricated for the first time, and a conversion efficiency of 10.5% was obtained.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2020 ◽  
Vol 8 (44) ◽  
pp. 23239-23247
Author(s):  
Andy Man Hong Cheung ◽  
Han Yu ◽  
Siwei Luo ◽  
Zhen Wang ◽  
Zhenyu Qi ◽  
...  

This is the first time alkylthio chains are employed on Y6-like NFAs to achieve organic solar cells of power conversion efficiency higher than 16%.


1987 ◽  
Vol 95 ◽  
Author(s):  
Shinya Tsuda ◽  
Hisao Haku ◽  
Hisaki Tarui ◽  
Takao Matsuyama ◽  
Katsunobu Sayama ◽  
...  

AbstractIn order to improve the conversion efficiency of a-Si solar cells, high-quality a-Si based alloys of both narrow handgap and wide bandgap were studied.Concerning the narrow bandgap material, we found a particular dependence of film qualities on substrate temperature. In addition, high-quality a-SiGe:H films were obtained by using a super chamber (separated ultra-high vacuum reaction chamber).As for the high-quality wide bandgap material, a-Si/a-SiC superlattice structure films fabricated by a photo-CVD method were studied for the first time. From the analysis of their properties, we found that the superlattice structure p-layer was an active layer for photovoltaic effect. A conversion efficiency of 11.2% has been obtained for a pin a-Si solar cell whose player was of the superlattice structure.


Author(s):  
Ping Hou ◽  
Wenxiang Yang ◽  
Ning Wan ◽  
Zhi Fang ◽  
Jinju Zheng ◽  
...  

We report a facile BiBr3(DMSO)2 adduct process to produce high-quality Cs2AgBiBr6 films with large grains for the first time, which leads to an enhancement of over 40% on the PCE of Cs2AgBiBr6-based solar cells compared to that of the control sample.


2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3398
Author(s):  
Yi Long ◽  
Kun Liu ◽  
Yongli Zhang ◽  
Wenzhe Li

Inorganic cesium lead halide perovskites, as alternative light absorbers for organic–inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.


RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83802-83807 ◽  
Author(s):  
Yu Hou ◽  
Shuang Yang ◽  
Chunzhong Li ◽  
Huijun Zhao ◽  
Hua Gui Yang

An energy conversion efficiency of 8.31% is reached by using a cemented photoanode for dye-sensitized solar cells, attaining a 31.1% improvement over the standard Degussa P25 sample.


2017 ◽  
Vol 5 (35) ◽  
pp. 9005-9011 ◽  
Author(s):  
Ju Hwan Kim ◽  
Dong Hee Shin ◽  
Ha Seung Lee ◽  
Chan Wook Jang ◽  
Jong Min Kim ◽  
...  

The co-doping of graphene with Au nanoparticles and bis(trifluoromethanesulfonyl)-amide is employed for the first time to enhance the performance of graphene/porous Si solar cells.


Sign in / Sign up

Export Citation Format

Share Document