Atomic-scale Analysis of Laser MBE Growth of Oxide Thin Films by in situ Rheed and Caiciss

1997 ◽  
Vol 502 ◽  
Author(s):  
M. Yoshimoto ◽  
T. Ohnishi ◽  
G-H. Lee ◽  
K. Sasaki ◽  
H. Maruta ◽  
...  

ABSTRACTAtomic-scale growth analysis of oxide thin films was performed by in situ reflection high energy electron diffraction (RHEED) and coaxial impact collision ion scattering spectroscopy (CAICISS) combined with Laser MBE. On single crystal substrates with atomically flat terrace and step structures, the two-dimensional nucleation followed by molecular layer-by-layer growth was verified by in situ monitoring of RHEED intensity oscillations, as well as ex situ atomic force microscopy (AFM) observation, for the growth of BaTiO3, Al2O3 and BaO thin films. The epitaxial BaTiO3 films grown on SrTiO3(100) and c-axis oriented Bi2Sr2CaCu2Ox (Bi2212) superconducting films were subjected to in situ CAICISS measurements in order to examine the topmost surface structure. The key factors to develop oxide lattice engineering are discussed with respect to not only in situ monitoring of the growth process using RHEED but also the atomic regulation of the substrate surface by AFM and ion scattering spectroscopy. The present work also demonstrates the advanced oxide thin film processing based on the laser MBE to control the growth and surface of films on an atomic scale.

1995 ◽  
Vol 401 ◽  
Author(s):  
M. Yoshimoto ◽  
T. Maeda ◽  
T. Ohnishi ◽  
G. H. Lee ◽  
H. Koinuma

AbstractAdvanced thin film technology based on laser MBE has enabled us to control the molecular layer-by-layer epitaxial growth and interface structure of oxide thin films in an atomic scale. Molecular layer epitaxy of oxide thin film growth was verified from in situ monitoring of intensity oscillation in reflection high energy electron diffraction (RHEED). Advanced oxide thin film technology was applied to form oxide superlattices for quantum functional oxides and to achieve lattice-matched heteroepitaxy in oxide films on silicon substrate for all epitaxial oxide/silicon hybrid devices. The key factors to develop oxide lattice engineering are discussed with respect to not only in situ monitoring of growth process using RHEED but also atomic regulation of the substrate surface by atomic force microscopy and ion scattering spectroscopy.


1998 ◽  
Vol 73 (2) ◽  
pp. 187-189 ◽  
Author(s):  
M. Yoshimoto ◽  
H. Maruta ◽  
T. Ohnishi ◽  
K. Sasaki ◽  
H. Koinuma

2014 ◽  
Vol 70 (a1) ◽  
pp. C724-C724
Author(s):  
Christoph Genzel

The most important advantage of energy dispersive (ED) diffraction compared with angle dispersive methods is that the former provides complete diffraction patterns in fixed but arbitrarily selectable scattering directions. Furthermore, in experiments that are carried out in reflection geometry, the different photon energies E(hkl) of the diffraction lines in an ED diffraction pattern can be taken as an additional parameter to analyze depth gradients of structural properties in the materials near surface region. For data evaluation advantageous use can be made of whole pattern methods such as the Rietveld method, which allows for line profile analysis to study size and strain broadening [1] or for the refinement of models that describe the residual stress depth distribution [2]. Concerning polycrystalline thin films, the features of ED diffraction mentioned above can be applied to study residual stresses, texture and the microstructure either in ex-situ experiments or in-situ to monitor, for example, the chemical reaction pathway during film growth [3]. The main objective of this talk is to demonstrate that (contrary to a widespread opinion) high energy synchrotron radiation and thin film analysis may fit together. The corresponding experiments were performed on the materials science beamline EDDI at BESSY II which is one of the very few instruments worldwide that is especially dedicated to ED diffraction. On the basis of selected examples it will be shown that specially tailored experimental setups allow for residual stress depth profiling even in thin films and multilayer coatings as well as for fast in situ studies of film stress and microstructure evolution during film growth.


2019 ◽  
Vol 25 (3) ◽  
pp. 592-600 ◽  
Author(s):  
Krishna Kanth Neelisetty ◽  
Xiaoke Mu ◽  
Sebastian Gutsch ◽  
Alexander Vahl ◽  
Alan Molinari ◽  
...  

AbstractIn situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.


2003 ◽  
Vol 52 (10) ◽  
pp. 2601
Author(s):  
Chen Ying-Fei ◽  
Peng Wei ◽  
Li Jie ◽  
Chen Ke ◽  
Zhu Xiao-Hong ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2542
Author(s):  
Dimosthenis Toliopoulos ◽  
Alexey Fedorov ◽  
Sergio Bietti ◽  
Monica Bollani ◽  
Emiliano Bonera ◽  
...  

We report on the dewetting process, in a high vacuum environment, of amorphous Ge thin films on SiO2/Si (001). A detailed insight of the dewetting is obtained by in situ reflection high-energy electron diffraction and ex situ scanning electron microscopy. These characterizations show that the amorphous Ge films dewet into Ge crystalline nano-islands with dynamics dominated by crystallization of the amorphous material into crystalline nano-seeds and material transport at Ge islands. Surface energy minimization determines the dewetting process of crystalline Ge and controls the final stages of the process. At very high temperatures, coarsening of the island size distribution is observed.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Sign in / Sign up

Export Citation Format

Share Document