Microanalysis of Soot Particulates using Stem

1997 ◽  
Vol 502 ◽  
Author(s):  
David C. Bell ◽  
Lenore C. Rainey ◽  
ÁrpÁd B. Palotás ◽  
John B. Vandersande

ABSTRACTScanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray analysis (EDX) and electron energy-loss spectroscopy (EELS) has been used to characterize the elemental composition and oxidation conditions of various soot samples. The STEM employed in this investigation was the Vacuum Generators HB603, with a microanalytical resolution approaching 1 rnm, that allowed the analysis of individual soot particles and aggregates. The aim of this research is quantification of the EDX spectra which is possible after background and absorption corrections. This information can then be used for comparative studies of different fuels and combustion processes. EELS has been employed to determine the amount of graphitic carbon in a soot particulate, and the detection of trace elements of low atomic number. It has been shown in soot that for Carbon the energy-loss of the p shell electrons increases with the amount of oxidation at high temperatures. Analysis and characterization of gas turbine soot, collected from an engine exhaust duct of a 737-300 aircraft showed an abundance of different elements. Some of these elements originated from the fuel and combustion processes, while other elements were components of the engine itself that combined with the soot particulates during the combustion process. The study showed that soot impurities were found in all discrete sections of aggregates, and that only one or two small soot particulates were necessary to obtain a chemical fingerprint. Other investigations include; coal soot, diesel soot at different engine operating conditions and soot produced from wood burning. The richness of the spectra obtained and the ability to quantify results represents an opportunity to accomplish source identification in a novel, powerful way.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1009-1010
Author(s):  
David C. Bell ◽  
Lenore C. Rainey ◽  
John Vander-Sande

Overview Scanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray analysis (EDX) and electron energy-loss spectroscopy (EELS) has been used to characterize the elemental composition and oxidation conditions of various soot samples. The STEM employed in this investigation was the Vacuum Generators HB603-MIT, with a microanalyical resolution approaching 1 nm, that allowed the analysis of individual soot particles and aggregates.The aim of this research is quantification of the EDX spectra which is possible after background and absorption corrections. This information can then be used for comparative studies of different fuels and combustion processes.EELS has been employed to determine the amount of graphitic carbon in a soot particulate, and the detection of trace elements of low atomic number. It has been shown in soot that for Carbon the energy-loss of the p shell electrons increases with the amount of oxidation at high temperatures.Analysis and characterization of gas turbine soot, collected from an engine exhaust duct of a 737-300 aircraft showed an abundance of different elements.


2019 ◽  
Vol 21 (37) ◽  
pp. 21104-21108 ◽  
Author(s):  
Maximilian Lasserus ◽  
Daniel Knez ◽  
Florian Lackner ◽  
Martin Schnedlitz ◽  
Roman Messner ◽  
...  

Vanadium oxide clusters with a mean diameter below 10 nm are created in helium droplets, and after deposition, studied by Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy.


2014 ◽  
Vol 5 ◽  
pp. 946-955 ◽  
Author(s):  
Yucheng Zhang ◽  
Ivo Utke ◽  
Johann Michler ◽  
Gabriele Ilari ◽  
Marta D Rossell ◽  
...  

A thriving field in nanotechnology is to develop synergetic functions of nanomaterials by taking full advantages of unique properties of each component. In this context, combining TiO2 nanocrystals and carbon nanotubes (CNTs) offers enhanced photosensitivity and improved photocatalytic efficiency, which is key to achieving sustainable energy and preventing environmental pollution. Hence, it has aroused a tremendous research interest. This report surveys recent research on the topic of synthesis and characterization of the CNT–TiO2 interface. In particular, atomic layer deposition (ALD) offers a good control of the size, crystallinity and morphology of TiO2 on CNTs. Analytical transmission electron microscopy (TEM) techniques such as electron energy loss spectroscopy (EELS) in scanning transmission mode provides structural, chemical and electronic information with an unprecedented spatial resolution and increasingly superior energy resolution, and hence is a necessary tool to characterize the CNT–TiO2 interface, as well as other technologically relevant CNT–metal/metal oxide material systems.


Sign in / Sign up

Export Citation Format

Share Document