Metastable Alloy Formation By Ion Beam Mixing

1985 ◽  
Vol 51 ◽  
Author(s):  
F.W. Saris ◽  
J.F.M. Westendorp ◽  
A. Vredenberg

ABSTRACTIn Ion Beam Mixing new surface alloys are produced by a combination of vacuum deposition and ion irradiation. One may wonder what the advantages are of this combination. Indeed one may ask:- Why not just ion implantation?- Why ion beams instead of laser or electron beams?- Why ion mixing instead of evaporation only?- What phases are formed and what is the stability of ion mixed phases?In an attempt to answer these questions the role of ion beam mixing in modern materials modification will de delineated. Areas of controversy and further development will also be illustrated.

2012 ◽  
Vol 167 (7) ◽  
pp. 506-511 ◽  
Author(s):  
G. Devaraju ◽  
S. V.S. Nageswara Rao ◽  
N. Srinivasa Rao ◽  
V. Saikiran ◽  
T. K. Chan ◽  
...  

2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


2005 ◽  
Vol 875 ◽  
Author(s):  
A. Debelle ◽  
G. Abadias ◽  
A. Michel ◽  
C. Jaouen ◽  
Ph. Guérin ◽  
...  

AbstractEpitaxial Mo(110)/Ni(111) superlattices were grown on (1120) single-crystal sapphiresubstrates, by ion beam sputtering (IBS) and thermal evaporation (TE), in order to investigate the role of deposited energy on the interfacial mixing process observed in Mo sublayers. To separate intermixing and growth stress contributions, a careful and detailed characterization of the stress/strain state of both samples was performed by X-ray Diffraction (XRD). Non-equal biaxial coherency stresses are observed in both samples. For the IBS specimen, an additional source of stress, of hydrostatic type, due to growth-induced point defects, is present, resulting in a triaxial stress state. The use of ion irradiation to achieve a controlled stress relaxation can provide additional data and, as shown elsewhere, allows to obtain the stress-free lattice parameter a0 solely linked to chemical effects. For the TE sample, a standard biaxial analysis gives a0. In both samples, the a0 value is lower than the bulk lattice parameter, due to the presence of intermixed Mo(Ni) layers. However, the intermixing is larger in the sputtered Mo sublayers than in the thermal evaporated ones, putting forward the prime role of energy and/or momentum transfer occurring during energetic bombardment.


1991 ◽  
Vol 235 ◽  
Author(s):  
J. C. Barbour ◽  
H. J. Stein

ABSTRACTThe incorporation of hydrogen into silicon nitride films grown downstream from an electron cyclotron resonance (ECR) plasma decreased rapidly with increasing substrate temperature (100–600°C). Fourier transform infra-red (FTIR) spectroscopy showed that the hydrogen in the as-grown material was primarily bonded to nitrogen. However, an applied bias of -200 V caused an increase in the number of Si-H bonds relative to N-H bonds, as a result of increased ion-beam damage. In addition, ion irradiation of an as-grown film with 175 keV Ar+ at room temperature showed that H transferred from N-H bonds to Si-H bonds without a loss of H. Elastic recoil detection (ERD) and FTIR of thermally annealed films showed that the stability of H incorporated during deposition increased with deposition temperature, and that the N-H bond was more stable than the Si-H bond above 700°C. Deuterium plasma treatments, at 600°C, of annealed films caused isotopic substitution with a conservation of bonds. Therefore, hydrogen loss from annealed films is apparently accompanied by a reduction in dangling bonds.


2003 ◽  
Vol 806 ◽  
Author(s):  
H. R. Gong ◽  
L. T. Kong ◽  
B. X. Liu

ABSTRACTFor the immiscible Cu-Ta and Cu-W systems, realistic n-body potentials are derived under an embedded-atom method through fitting the cross potentials to some physical properties obtained from ab initio calculations for a few possible metastable Cu-Ta and Cu-W crystalline phases, respectively. Based on the derived potentials, molecular dynamics simulations reveal that in the Cu-Ta system, 30 at. % of Ta in Cu is the critical composition for the crystal-to-amorphous transition in the Cu-rich Cu-Ta solid solutions, and that in the Cu-W system, amorphous alloys can be formed within the composition range of 20–65 at. % of W. Interestingly, amorphous alloys are indeed obtained by ion-beam mixing in properly designed Cu70Ta 30, Cu65Ta35, Cu60Ta 40, and Cu50Ta 50 multilayered films, while crystalline Cu and Ta remain in Cu75Ta25 multilayered sample, which matches well with the critical composition of 30 at. % of Ta predicted by simulation. Moreover, there have been experimental data, which are in support of the predicted composition range of the Cu-W system by simulations.


2002 ◽  
Vol 91 (3) ◽  
pp. 1129-1134 ◽  
Author(s):  
Saskia Kraft ◽  
Beate Schattat ◽  
Wolfgang Bolse ◽  
Siegfried Klaumünzer ◽  
Felix Harbsmeier ◽  
...  

1983 ◽  
Vol 48 (9) ◽  
pp. 765-767 ◽  
Author(s):  
J.A. Alonso ◽  
S. Simozar

Author(s):  
R. Brenier ◽  
P. Thevenard ◽  
T. Capra ◽  
A. Perez ◽  
M. Treilleux ◽  
...  

1988 ◽  
Vol 100 ◽  
Author(s):  
R. G. Elliman ◽  
J. Linnros ◽  
W. L. Brown

ABSTRACTFixed fluence ion irradiation of silicon is shown to produce either defected crystal or amorphous silicon depending on the ion flux employed. The amorphous threshold flux, defined as the minimum flux required to generate a continuous amorphous layer for a fixed fluence irradiation, is measured as a function of irradiation temperature. This critical flux for amorphization is shown to satisfy an Arrhenius expression with a unique activation energy of ∼1.2eV, which corresponds to the migration/dissociation energy of the silicon divacancy. These observations lead to the conclusion that the stability of the silicon divacancy controls the competition between defect production and dynamic defect annealing, and hence the crystalline to amorphous phase transformation.


Sign in / Sign up

Export Citation Format

Share Document