Hydrogen in Dielectric Film Formation From an Electron Cyclotron Resonance Plasma

1991 ◽  
Vol 235 ◽  
Author(s):  
J. C. Barbour ◽  
H. J. Stein

ABSTRACTThe incorporation of hydrogen into silicon nitride films grown downstream from an electron cyclotron resonance (ECR) plasma decreased rapidly with increasing substrate temperature (100–600°C). Fourier transform infra-red (FTIR) spectroscopy showed that the hydrogen in the as-grown material was primarily bonded to nitrogen. However, an applied bias of -200 V caused an increase in the number of Si-H bonds relative to N-H bonds, as a result of increased ion-beam damage. In addition, ion irradiation of an as-grown film with 175 keV Ar+ at room temperature showed that H transferred from N-H bonds to Si-H bonds without a loss of H. Elastic recoil detection (ERD) and FTIR of thermally annealed films showed that the stability of H incorporated during deposition increased with deposition temperature, and that the N-H bond was more stable than the Si-H bond above 700°C. Deuterium plasma treatments, at 600°C, of annealed films caused isotopic substitution with a conservation of bonds. Therefore, hydrogen loss from annealed films is apparently accompanied by a reduction in dangling bonds.

1991 ◽  
Vol 236 ◽  
Author(s):  
J. C. Barbour ◽  
H. J. Stein

AbstractThe incorporation of hydrogen into silicon nitride films grown downstream from an electron cyclotron resonance (ECR) plasma decreased rapidly with increasing substrate temperature (100-600°C). Fourier transform infra-red (FTIR) spectroscopy showed that the hydrogen in the as-grown material was primarily bonded to nitrogen. However, an applied bias of -200 V caused an increase in the number of Si-H bonds relative to N-H bonds, as a result of increased ion-beam damage. In addition, ion irradiation of an asgrown film with 175 keV Ar+ at room temperature showed that H transferred from N-H bonds to Si-H bonds without a loss of H. Elastic recoil detection (ERD) and FTIR of thermally annealed films showed that the stability of H incorporated during deposition increased with deposition temperature, and that the N-H bond was more stable than the Si-H bond above 700°C. Deuterium plasma treatments, at 600°C, of annealed films caused isotopic substitution with a conservation of bonds. Therefore, hydrogen loss from annealed films is apparently accompanied by a reduction in dangling bonds.


1997 ◽  
Vol 504 ◽  
Author(s):  
J. C. Barbour ◽  
B. G. Potter

ABSTRACTHydrogen in deposited optical ceramics can modify the optical properties, and therefore the role of the hydrogen needs to be understood to control its effects. Erbium-doped amorphous alumina films were deposited using simultaneous electron beam evaporation of aluminum and erbium while bombarding the sample with 30 eV 02+ ions from an electron cyclotron resonance (ECR) plasma. The hydrogen content was measured, using elastic recoil detection, as a function of isochronal annealing treatments. The data was fit to a simple trap-release model in order to determine an effective activation energy for the thermal release of H from alumina and Er-doped alumina. The intensity of the ion-beam stimulated luminescence from these samples was monitored in the visible and near infrared regions as a function of the thermal treatments. In order to gain a better understanding of the influence of hydrogen, the ionoluminescence (IL) data from samples containing hydrogen were fit with a simple linear equation.


2003 ◽  
Vol 21 (1) ◽  
pp. 37-40 ◽  
Author(s):  
PHILIP C. EFTHIMION ◽  
ERIK GILSON ◽  
LARRY GRISHAM ◽  
PAVEL KOLCHIN ◽  
RONALD C. DAVIDSON ◽  
...  

Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1–100 times the ion beam density and at a length ∼0.1–2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1–10 gauss. The goal is to operate the source at pressures ∼10−6 Torr at full ionization. The initial operation of the source has been at pressures of 10−4–10−1 Torr. Electron densities in the range of 108 to 1011 cm−3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 195-201 ◽  
Author(s):  
P. K. Shufflebotham ◽  
D. J. Thomson

This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally occurred in distinct "modes," characterized by unique shapes and dependences on system variables, and between which discontinuous, noisy, and often bistable transitions occurred. Axially resolved probe measurements performed under ECR conditions showed that the plasma density exhibited a broadly peaked profile, while the electron temperature showed a sharp peak at ECR. The differences in these profiles leads to three qualitatively different plasma regions available for use in ECR processing. The variation of the plasma potential explains the origin of the axial ion beams that commonly occur in these systems.


2012 ◽  
Vol 83 (2) ◽  
pp. 02A333 ◽  
Author(s):  
Y. Higurashi ◽  
J. Ohnishi ◽  
T. Nakagawa ◽  
H. Haba ◽  
M. Tamura ◽  
...  

1996 ◽  
Vol 67 (3) ◽  
pp. 1000-1002 ◽  
Author(s):  
V. Roy ◽  
L. Wartski ◽  
F. Boukari ◽  
A. Momy ◽  
C. Schwebel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document