In Situ Monitoring of the Electrochemical Absorption of Deuterium into Palladium by X-Ray Diffraction using Synchrotron-Wiggler Radiation

1998 ◽  
Vol 524 ◽  
Author(s):  
D. D. Dominguez ◽  
P. L. Hagans ◽  
E. F. Skelton ◽  
S. B. Qadri ◽  
D. J. Nagel

ABSTRACTWith low energy x-rays, such as those from a Cu x-ray tube, only the outer few microns of a metallic sample can be probed. This low penetrating power prohibits structural studies from being carried out on the interior of an electrode in an electrochemical cell because of absorption by the cell material, electrodes and the electrolyte. The work described in this paper circumvents this problem by utilizing high energy, high brightness x-rays produced on the superconducting wiggler beam line, X-17C, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The penetrating power of the higher energy x-rays allowed Pd diffraction spectra to be obtained in-situ on a 1 mm diameter Pd wire cathode during electrolysis of heavy water. Moreover, the beam (28 × 28 μm in cross-section) allowed diffraction spectra to be acquired as a function of distance across the sample. Spectra were recorded in 50 μm steps from the edge of the Pd wire to its core. This was done at 2 minute intervals as a function of electrolysis time. The α-β phase transition induced in the Pd while deuterium was electrochemically absorbed was observed by monitoring the Pd-(422) diffraction peaks. Results allowed the diffusion rate and the diffusivity of deuterium atoms in the Pd wire to be determined. Other features of the structural changes associated with the absorption of deuterium into Pd are reported.

1991 ◽  
Vol 35 (B) ◽  
pp. 995-1000
Author(s):  
J.V. Gilfrich ◽  
E.F. Skelton ◽  
S.B. Qadri ◽  
N.E. Moulton ◽  
D.J. Nagel ◽  
...  

AbstractIt has been well established over recent years that synchrotron radiation possesses some unique features as a source of primary x-rays for x-ray fluorescence analysis. Advantage has been taken of the high intensity emanating from the bending magnets of storage rings to develop x-ray microprobes utilizing apertures or focussing optics, or both, to provide a beam spot at the specimen of the order of micrometers. The use of insertion devices wigglers and undulatora, can further increase the available intensity, especially for the high energy photons. Beam Line X-17C at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, accepts the unmodified continuum radiation from a superconducting wiggler in the storage ring. Some initial XRF measurements have been made on this beam line using apertures in the 10 to 100 micrometer range. The fluorescent radiation was measured by an intrinsic Ge detector having an energy resolution of 300 eV at 15 kev, and located at 90° to the incident beam in the plane of the electron orbit. In samples containing many elements, detection limits of a few ppm were achieved with 100 μm beams.


Author(s):  
X. Zhang ◽  
R. Balhorn ◽  
C. Jacobsen ◽  
J. Kirz ◽  
S. Williams

The Scanning Transmission soft X-ray Microscope (STXM) at the XIA beamline at the National Synchrotron Light Source, Brookhaven National Laboratory, has achieved 50 nm Rayleigh resolution and has been used to image wet biological samples using the natural absorption differences between carbon and water in the water window (between carbon and oxygen K-absorption edges). The step-like jumps in the absorption of soft x-rays by materials as a function of energy have been used for elemental mapping. Examination of these absorption "edges" with high energy resolution resolves fine absorption structures. These fine structures are strongly affected by the atom's local environment, such that they carry detailed information about the atom's chemical state. We have used this chemical sensitivity to distinguish between materials which have similar elemental composition but are chemically different. Images with 50 nm resolution and spectra from a spot size less than (0.2 (μm)2 can be acquired routinely.Figure 1 shows the x-ray absorption fine structure spectra at the carbon absorption edge from DNA and bovine serum albumin (BSA, a typical protein) taken using the STXM.


2011 ◽  
Vol 26 (2) ◽  
pp. 134-137 ◽  
Author(s):  
K. Matsui ◽  
A. Ogawa ◽  
J. Kikuma ◽  
M. Tsunashima ◽  
T. Ishikawa ◽  
...  

Hydrothermal formation reaction of tobermorite in the autoclaved aerated concrete (AAC) process has been investigated by in situ X-ray diffraction. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. XRD measurements were conducted in a temperature range 100–190°C throughout 12 h of reaction time with a time interval of 4.25 min under a saturated steam pressure. To clarify the tobermorite formation mechanism in the AAC process, the effect of Al addition on the tobermorite formation reaction was studied. As intermediate phases, non-crystalline calcium silicate hydrate (C-S-H), hydroxylellestadite (HE), and katoite (KA) were clearly observed. Consequently, it was confirmed that there were two reaction pathways via C-S-H and KA in the tobermorite formation reaction of Al containing system. In addition, detailed information on the structural changes during the hydrothermal reaction was obtained.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 155-166 ◽  
Author(s):  
WOLFGANG BRAUN ◽  
KLAUS H. PLOOG

X-rays are ideal to study the structure of crystals due to their weak interaction with matter and in most cases allow a quantitative analysis using kinematical theory. To study the incorporation of atoms during crystal growth and to analyze the kinetics on the crystal surface high primary beam intensities available at synchrotrons are required. Our studies of the molecular beam epitaxy growth of III–V semiconductors reveal that, despite their similarity in crystal structure, the surface kinetics of GaAs (001), InAs (001) and GaSb (001) differ strongly. GaAs shows an unexpectedly large coarsening exponent outside the predicted range of Ostwald ripening models during recovery. GaSb exhibits dramatically different surface morphology variations during growth and recovery. Overgrowth of GaAs by epitaxial MnAs demonstrates the ability of X-ray diffraction to follow an interface as it is buried during heteroepitaxy, which is not possible by reflection high-energy electron diffraction.


2006 ◽  
Vol 519-521 ◽  
pp. 1569-1578
Author(s):  
Dorte Juul Jensen

By 3 dimensional X-ray diffraction (3DXRD) using high energy X-rays from synchrotron sources it is possible to study in-situ the nucleation and growth during recrystallization. In this paper it is described and discussed how 3DXRD can supplement EBSP measurements of nucleation and growth. Three types of studies are considered: i) orientation relationships between nuclei and parent deformed matrix, ii) recrystallization kinetics of individual bulk grains and iii) filming of growing grains in deformed single crystals.


2020 ◽  
Vol 321 ◽  
pp. 03026
Author(s):  
K. Yamanaka ◽  
A. Kuroda ◽  
M. Ito ◽  
M. Mori ◽  
T. Shobu ◽  
...  

In this study, the tensile deformation behavior of an electron beam melted Ti−6Al−4V alloy was examined by in situ X-ray diffraction (XRD) line-profile analysis. The as-built Ti−6Al−4V alloy specimen showed a fine acicular microstructure that was produced through the decomposition of the α′-martensite during the post-melt exposure to high temperatures. Using high-energy synchrotron radiation, XRD line-profile analysis was successfully applied for examining the evolution of dislocation structures not only in the α-matrix but also in the nanosized, low-fraction β-phase precipitates located at the interfaces between the α-laths. The results indicated that the dislocation density was initially higher in the β-phase and an increased dislocation density with increasing applied tensile strain was quantitatively captured in each constitutive phase. It can be thus concluded that the EBM Ti−6Al−4V alloy undergoes a cooperative plastic deformation between the constituent phases in the duplex microstructure. These results also suggested that XRD line-profile analysis combined with highenergy synchrotron XRD measurements can be utilized as a powerful tool for characterizing duplex microstructures in titanium alloys.


1998 ◽  
Vol 4 (S2) ◽  
pp. 354-355
Author(s):  
J. Maser ◽  
C. Jacobsen ◽  
Y. Wang ◽  
A. Osanna ◽  
B. Winn ◽  
...  

With the steady improvement of x-ray optics with high resolution and efficiency, and continued development or adaptation of different imaging and measuring techniques, soft x-ray microscopy has emerged as a powerful method to image and analyze fully hydrated specimens of several micrometer thickness at sub-optical resolution (for a recent overview, see ref. 1). We report on experiments performed with the cryo scanning transmission x-ray microscope (cryo-STXM), which has recently come into operation at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.Cryo-STXM uses x-rays with energies between the absorption edge of Carbon (E = 284 eV) and Oxygen (E = 543 eV) from the soft x-ray undulator at the NSLS. Fully hydrated specimens such as eucaryotic cells in water or ice layers of up to 10 micrometer thickness can be imaged without any additional need for contrast enhancing techniques.


1996 ◽  
Vol 437 ◽  
Author(s):  
H. Ade ◽  
A. P. Smith ◽  
G. R. Zhuang ◽  
B. Wood ◽  
I. Plotzker ◽  
...  

AbstractWe have utilized the scanning transmission x-ray microscope at Brookhaven National Laboratory to acquire high energy resolution spectra of various polymers and to investigate the bulk characteristics of multiphasic polymeric materials with chemical sensitivity at a spatial resolution of about 50 nm. We present studies ranging from phase separated liquid crystalline polyesters and polyurethanes to various polymer blends. Improvements in the NEXAFS imaging and spectral acquisition protocol in the recent past provide much improved spectral fidelity and include in situ energy calibration with CO2.


2015 ◽  
Vol 3 (14) ◽  
pp. 7389-7398 ◽  
Author(s):  
Zhenzhen Yang ◽  
Lynn Trahey ◽  
Yang Ren ◽  
Maria K. Y. Chan ◽  
Chikai Lin ◽  
...  

In situ synchrotron diffraction and first principles modeling shows structural changes in α-MnO2 during cycling in Li–O2 battery cells, as lithium and oxygen are incorporated into and removed from tunnels in the structure.


Sign in / Sign up

Export Citation Format

Share Document