UV-Laser Ablation of HFO2 Dielectric Layers on SiO2 for Mask Preparation

1998 ◽  
Vol 526 ◽  
Author(s):  
K. Rubahn ◽  
J. Ihlemann

AbstractThe thickness dependence of ablation rates following 193nm UV-laser irradiation of single HfO2 layers on fused silica (SiO2) is investigated using scanning electron microscopy and stylus profilometry to determine quantitatively substrate roughness and ablation depth. Thin dielectric films of the investigated kind build up dielectric mirrors, which are patterned to prepare masks for excimer-laser micromachining. The single pulse ablation thresholds are found to increase approximately linearly with increasing HfO2 thickness and consequently the threshold fluence for obtaining clean ablation of the total HfO2 coating increases exponentially with its thickness. At elevated fluences both ablation of the coating as well as ablation of the substrate are observed. The results provide important quantitative values for a future treatment of more complicated multilayer systems of HfO2/SiO2 bilayers.

2020 ◽  
Author(s):  
Andrey Pil'nik ◽  
Andrey Chernov ◽  
Damir Islamov

Abstract In this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley-Read-Hall-like transport equations, which describe 1D transport through dielectric layers, might incorrectly describe the charge flow through the ultra-thin layers with a countable number of traps, taking into account injection-from and extraction-to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for dynamics of system evolution for special cases. These solutions can be used to test the code and for studying of charge transport properties of thin dielectric films.


Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrey A. Pil’nik ◽  
Andrey A. Chernov ◽  
Damir R. Islamov

AbstractIn this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley–Read–Hall-like transport equations, which describe the 1D transport through dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable number of traps, taking into account the injection from and extraction to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for the dynamics of system evolution for special cases. These solutions can be used to test the code and for studying the charge transport properties of thin dielectric films.


1996 ◽  
Vol 279 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
F. Tourtin ◽  
A. Ibanez ◽  
A. Haidoux ◽  
E. Philippot

2006 ◽  
Vol 89 (13) ◽  
pp. 133109 ◽  
Author(s):  
M. N. Chang ◽  
C. Y. Chen ◽  
M. J. Yang ◽  
C. H. Chien

Sign in / Sign up

Export Citation Format

Share Document