Characterization of Laser-Deposited TiAl Alloys

1998 ◽  
Vol 552 ◽  
Author(s):  
X. D. Zhang ◽  
C. Brice ◽  
R. J. Grylls ◽  
D. J. Evans ◽  
H. L. Fraser

ABSTRACTMicrostructure of TiAl produced by Laser Engineered Net Shaping (LENS) has been characterized using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has been shown that the substrate has a significant effect on the microstructure deposited. Depending on operational parameters, either equiaxed γ-TiAl/α2 -Ti3AI or single phase α 2 microstructure can be obtained. In-situ heating experiments reveal that nucleation of lamellae often starts at grain boundaries in this retained α 2grains. By careful control of post heat treatment, an ultra fine lamellar microstructure may be obtained, which may significantly improve tensile property in these alloys [3].

2020 ◽  
Vol 850 ◽  
pp. 267-272 ◽  
Author(s):  
Regina Burve ◽  
Vera Serga ◽  
Aija Krūmiņa ◽  
Raimons Poplausks

Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.


2013 ◽  
Vol 802 ◽  
pp. 227-231
Author(s):  
Panida Pilasuta ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont ◽  
Tosawat Seetawan

Crystal structure of Zn0.96Al0.02Ga0.02O was analyzed by X-Ray diffraction (XRD) technique and the microstructure was observed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed single phase and hexagonal structure a = b = 3.24982 Å, and c = 5.20661 Å. The SEM and TEM results showed the grain size of material arrangement changed after sintering and TEM diffraction pattern confirmed hexagonal crystal structure of Zn0.96Al0.02Ga0.02O after sintering.


2006 ◽  
Vol 16 (01n02) ◽  
pp. 127-136
Author(s):  
P. MALAR ◽  
TAPASH RANJAN RAUTRAY ◽  
V. VIJAYAN ◽  
S. KASIVISWANATHAN

Polycrystalline ingots of CuInSe 2 and CuIn 3 Se 5 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. X-ray Diffraction (XRD) studies confirmed the single-phase nature of the materials. Compositional analysis by Particle Induced X-ray Emission (PIXE) showed that the compounds are near stoichiometric. Thin films of CuInSe 2 and CuIn 3 Se 5 were grown from pre-synthesized CuInSe 2 and CuIn 3 Se 5 powders. The films were polycrystalline, single-phase and near stoichiometric in nature, as indicated by Transmission Electron Microscopy (TEM) and PIXE studies.


2017 ◽  
Vol 23 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Sibylle Schilling ◽  
Arne Janssen ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractThe capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.


Author(s):  
Lars I. van der Wal ◽  
Savannah J Turner ◽  
Jovana Zecevic

The characterization of heterogeneous catalysts is critical to their development and to understand their performance by correlating their physicochemical properties to their activity, selectivity and stability. Transmission electron microscopy (TEM)...


2005 ◽  
Vol 20 (7) ◽  
pp. 1695-1707 ◽  
Author(s):  
Renu Sharma

The world of nanomaterials has become the real world for most applications in the area of nanotechnology. As postsynthesis handling of materials at the nanoscale level is impractical, nanomaterials must be synthesized directly as part of a device or circuit. The demands of nanotechnology have led to modifications in the design of transmission electron microscopes (TEMs) that enable in situ synthesis and characterization simultaneously. The environmental TEM (ETEM) is one such modified instrument that has often been used to follow gas–solid and/or liquid–solid interactions at elevated temperatures. Although the history and development of the ETEM, also called the controlled atmosphere or environmental cell TEM, is as old as transmission electron microscopy itself, developments in the design of medium-voltage TEMs have succeeded in bringing resolutions down to the subnanometer level. A modern ETEM equipped with a field-emission gun, energy filter or electron energy-loss spectrometer, scanning transmission electron microscopy coils, and bright-field and dark-field detectors can be a versatile tool for understanding chemical processes at the nanometer level. This article reviews the design and operations of a dedicated ETEM. Its applications range from the in situ characterization of reaction steps, such as oxidation-reduction and hydroxylation, to the in situ synthesis of nanomaterials, such as quantum dots and carbon nanotubes. Some examples of the current and the future applications for the synthesis and characterization of nanomaterials are also discussed.


2017 ◽  
Vol 110 (21) ◽  
pp. 213903 ◽  
Author(s):  
Arijita Mukherjee ◽  
Hasti Asayesh Ardakani ◽  
Tanghong Yi ◽  
Jordi Cabana ◽  
Reza Shahbazian-Yassar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document