High-Resolution Electron Microscopy of Dislocation Cores in NiAl

1998 ◽  
Vol 552 ◽  
Author(s):  
D. Stöckle ◽  
W. Sigle ◽  
A. Seeger

ABSTRACTThe atomic structure of dislocation cores in NiAl is studied by high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) calculations. Results are presented on dislocations with Burgers vectors b=a<100> and a<111>. A comparison with HRTEM image simulations indicates that the core of a 45° a <100> dislocation consists of Al atoms. The Burgers vector distribution shows a width of 2.2b. This corresponds very closely to MD results and is consistent with the relatively low Peierls stress of this dislocation. By detailed image analysis the angular dependence of the shear stress components of the dislocation are made visible. MD results obtained from 45° dislocations with opposite screw components suggest, that the helicity of the screw component might be discernible from high-resolution electron micrographs. A a<111> dislocation with <110> line direction is shown which exhibits a rather wide dissociation, probably into two a/2<111> partials.

Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


Author(s):  
J.M. Howe ◽  
R. Gronsky

The technique of high-resolution electron microscopy (HREM) is invaluable to the materials scientist because it allows examination of microstructural features at levels of resolution that are unobtainable by most other methods. Although the structural information which can be determined by HREM and accompanying image simulations has been well documented in the literature, there have only been a few cases where this technique has been used to reveal the chemistry of individual columns or planes of atoms, as occur in segregated and ordered materials.


1999 ◽  
Vol 571 ◽  
Author(s):  
N. D. Zakharov ◽  
P. Werner ◽  
V. M. Ustinov ◽  
A.R. Kovsh ◽  
G. E. Cirlin ◽  
...  

ABSTRACTQuantum dot structures containing 2 and 7 layers of small coherent InAs clusters embedded into a Si single crystal matrix were grown by MBE. The structure of these clusters was investigated by high resolution transmission electron microscopy. The crystallographic quality of the structure severely depends on the substrate temperature, growth sequence, and the geometrical parameters of the sample. The investigation demonstrates that Si can incorporate a limited volume of InAs in a form of small coherent clusters about 3 nm in diameter. If the deposited InAs layer exceeds a critical thickness, large dislocated InAs precipitates are formed during Si overgrowth accumulating the excess of InAs.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


1991 ◽  
Vol 238 ◽  
Author(s):  
X. G. Ning ◽  
L. P. Guo ◽  
R. F. Huang ◽  
J. Gong ◽  
B. H. Yu ◽  
...  

ABSTRACTThe interface structure in a Ti/TiN multilayer material has been investigated by high resolution transmission electron microscopy (HRTEM). It was shown that the α-Ti and β-TiN layers consisted of many cylindrical crystals growing along the close packed directions normal to the surface of a stainless steel. There existed specific orientation relationship at the Ti/TiN interfaces without transition layers: (111)TiN ‖ (001)Ti, [110]TiN ‖ [100]Ti. However there was no such orientation relationship at the Ti/TiN interfaces with TixN (x >1) transition layers.


1986 ◽  
Vol 82 ◽  
Author(s):  
A. Cerri ◽  
R. Schmelczer ◽  
P. Schwander ◽  
G. Kostorz ◽  
A.F. Wright

ABSTRACTThe decomposition of Ni ∼ 11.5 at.% Ti single crystals was studied for an ageing temperature of 540°C. In this alloy, coherent ordered zones of γ′-Ni3Ti (Cu3Au structure) are formed prior to the stable n precipitates. The early stages of zone formation were investigated by in-beam SANS and transmission electron microscopy (TEM). Electron diffraction, high resolution electron microscopy, TEM analysis of dislocation arrangements in samples deformed after ageing and X-ray measurements of the integrated intensity at L12 superstructure positions show that ordered regions already appear in quenched samples, whereas compositional changes, as determined by SANS measurements, occur only upon ageing.


1990 ◽  
Vol 183 ◽  
Author(s):  
C. P. Burmester ◽  
S. Quong ◽  
L. T. Wille ◽  
R. Gronsky ◽  
B. T. Ahn ◽  
...  

AbstractHigh resolution electron microscopy is used to investigate the effect of electron irradiation induced oxygen loss on the states of partial order in YBa2Cu3Oz. Contrast effects visible in the [001] zone image as a result of the degree of the out-of-plane correlation of these ordered states are investigated. Using statistical simulations to aid in the analysis of the HREM images, an interpretation based on a kinetically limited evolution of the variation of long range [001] ordering is proposed.


1993 ◽  
Vol 8 (5) ◽  
pp. 1019-1027 ◽  
Author(s):  
F. Hakkens ◽  
A. De Veirman ◽  
W. Coene ◽  
Broeder F.J.A. den

The structure of Co/Pd and Co/Au (111) multilayers is studied using transmission electron microscopy and high resolution electron microscopy. We focused on microstructure, atomic stacking (especially at the interfaces), and coherency, as these are structural properties that have considerable magnetic effects. A columnar structure with a strong curvature of the multilayer influenced by substrate temperature during growth is observed. High resolution imaging shows numerous steps at the interfaces of the multilayer structure and the presence of misfit dislocations. In bright-field images, periodic contrast fringes are observed at these interfaces as the result of moiré interference. These moiré fringes are used to study the misfit relaxation at the interfaces, whereas electron diffraction gives the average relaxation over the whole layer. Both measurements determined that, for Co/Pd as well as Co/Au multilayers, 80–85% of the misfit is relaxed and 20–15% remains in the form of strain, independent of the Co layer thickness in the regime studied.


Author(s):  
R. Csencsits

High resolution electron microscopy (HREM) is a valuable technique for studying catalytic zeolite systems because it gives direct information about the structure and defects present in the structure. The difficulty with doing an HREM study on zeolites is that they become amorphous under electron irradiation. This work is a systematic investigation of the damage of Y zeolites in the transmission electron microscope (TEM); the goals of this study are to determine the mechanism for electron damage and to access the effects of damage in Y zeolites on their HREM images using computer simulation.


Sign in / Sign up

Export Citation Format

Share Document