scholarly journals Advanced Experimental Technique for Radiation Damage Effects in Nuclear Waste Forms: Neutron Total Scattering Analysis

MRS Advances ◽  
2018 ◽  
Vol 3 (31) ◽  
pp. 1735-1747
Author(s):  
Maik Lang ◽  
Eric C. O’Quinn ◽  
Jacob Shamblin ◽  
Jörg Neuefeind

ABSTRACTFor the past 30 years, the development of durable materials for radionuclide immobilization has been driven by efforts to dispose of wastes generated by the nuclear fuel cycle [National Research Council, ‘Waste Forms Technology and Performance: Final Report’, the National Academies Press, Washington D.C., 2011]. Many materials have been developed, but there still exist large gaps in the knowledge of fundamental modes of waste form degradation in repository environments. An important aspect of waste form science is the behavior of the materials under intense irradiation from decaying actinides and fission products. This irradiation induces a wide range of defects and disorder, the details of which depend on the specific waste form material. At the present time, it is not fully explained how radiation effects will influence the performance of nuclear waste forms and their long-term retention of fission products and actinides under operational conditions. The complex defect behavior and radiation damage must be understood over a range of length scales, from the initial atomic-scale defect structure to the long-range observable material modification. This is particularly challenging and requires advanced characterization techniques. This contribution describes how pair distribution function (PDF) analysis obtained from neutron total scattering experiments can be applied in the research field of waste form science to uniquely characterize radiation effects in a wide range of materials, including crystalline complex oxides and waste glasses. Neutron scattering strength does not have an explicit Z-dependence; this allows access to many low-Z elements, such as oxygen, that cannot be accurately studied with X-rays. In many cases, this can permit a detailed analysis of both cation (often high-Z) and anion (often low-Z) defect behavior. In contrast to traditional crystallography, which relies on long-range order, PDF analysis probes the local defect structure, including changes in site occupation, coordination, and bond distance. This is particularly important when characterizing aperiodic waste glasses with no long-range order at all. In contrast to X-ray characterization which requires very little sample mass (∼0.1 mg), neutron characterization (even at state-of-the-art spallation facilities) requires relatively large sample mass (∼50 - 100 mg). Obtaining this quantity is challenging for studies of irradiated materials, but by tailoring our experimental approach to use high-energy ions (GeV) with very high penetration depth, we are able to produce the required mass.

1999 ◽  
Vol 556 ◽  
Author(s):  
D. P. Abraham ◽  
L. J. Simpson ◽  
M. J. Devries ◽  
S. M. Mcdeavitt

AbstractStainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel- 15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosio n, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.


1981 ◽  
Vol 11 ◽  
Author(s):  
J.W. Wald ◽  
P. Offemann

Radiation effects studies in both glass and glass ceramic nuclear waste forms have identified a rare-earth titanate phase of the general formula (RE) 2Ti207 which is capable of acting as a host phase for actinides.1,2 Ringwood and co-workers3 have also proposed a structurally similar phase, zirconolite (CaZrTi2 07), as one of the primary host phases in the SYNROC waste form. Data from these and other previous studies, as well as mineralogical information available on these titanate phases, have not provided an unambiguous interpretation of the effects of radiation damage relative to nuclear waste forms. This paper reports new laboratory data concerning radiation damage effects in both of these phases.


2000 ◽  
Vol 6 (S2) ◽  
pp. 368-369
Author(s):  
N.L. Dietz ◽  
D.D Keiser

Argonne National Laboratory has developed an electrometallurgical treatment process for metallic spent nuclear fuel from the Experimental Breeder Reactor-II. This process stabilizes metallic sodium and separates usable uranium from fission products and transuranic elements that are contained in the fuel. The fission products and other waste constituents are placed into two waste forms: a ceramic waste form that contains the transuranic elements and active fission products such as Cs, Sr, I and the rare earth elements, and a metal alloy waste form composed primarily of stainless steel (SS), from claddings hulls and reactor hardware, and ∼15 wt.% Zr (from the U-Zr and U-Pu-Zr alloy fuels). The metal waste form (MWF) also contains noble metal fission products (Tc, Nb, Ru, Rh, Te, Ag, Pd, Mo) and minor amounts of actinides. Both waste forms are intended for eventual disposal in a geologic repository.


1981 ◽  
Vol 6 ◽  
Author(s):  
Clyde J. M. Northrup ◽  
George W. Arnold ◽  
Thomas J. Headley

ABSTRACTThe first observations of physical and chemical changes induced by lead implantation damage and leaching are reported for two proposed U.S. nuclear waste forms (PNL 76–68 borosilicate glass and Sandia titanate ceramics) for commercial wastes. To simulate the effects of recoil nucleii due to alpha decay, the materials were implanted with lead ions at equivalent doses up to approximately 1 × 1019 a decays/cm3 . In the titanate waste form, the zirconolite, perovskite, hollandite, and rutile phases all exhibited a mottled appearance in the transmission electron microscope (TEM) typical of defect clusters in radiation damaged, crystalline solids. One titanate phase containing uranium was found by TEM to be amorphous after implantation at the highest dose. No enhanced leaching (deionized water, room temperature, 24 hours) of the irradiated titanate waste form, including the amorphous phase, was detected by TEM, but Rutherford backscattering (RBS) suggested a loss of cesium and calcium after 21 hours of leaching. The RBS spectra also indicated enhanced leaching from the PNL 76–68 borosilicate glass after implantation with lead ions, in general agreement with the observations of Dran, et al. [6,7] on other irradiated materials. Elastic recoil detection spectroscopy (ERD), used to profile hydrogen after leaching, showed penetration of the hydrogen to several thousand angstroms for both the implanted and unimplanted materials. These basic studies identified techniques to follow the changes that occur on implantation and leaching of complex amorphous and crystalline waste forms. These studies were not designed to produce comparisons between waste forms of gross leach rates.


1998 ◽  
Vol 4 (S2) ◽  
pp. 560-561
Author(s):  
Edgar C. Buck

Secondary phases that form during the corrosion of nuclear waste forms may influence both the rate of waste form dissolution and the release of radionuclides [1]. The identification of these phases is critical in developing models for the corrosion behavior of nuclear waste forms. In particular, the secondary uranyl (VI) minerals that form during waste form alteration may control uranium solubility and release of radionuclides incorporated into these phases [2].The U6+ cation in uranyl minerals is almost always present as a linear (UO2)2+ ion [3]. This uranyl (Ur) ion is coordinated by four, five, or six anions (ϕ) in the equatorial plane resulting in the formation of square (Urϕ4), pentagonal (Urϕ5), and hexagonal (Urϕ6) bipyramids, respectively [3]. These bipyramid polyhedra may polymerize to form complex infinite sheet structures. The linking of Urϕ5 is observed in a number of uranyl minerals formed during waste glass and spent fuel corrosion [2,4], such as weeksite [Na,K(UO2)2(Si205)3*4H2O] and β-uranophane [Ca[(UO2)(SiO3OH)]2*5H2O].


2014 ◽  
Vol 94 ◽  
pp. 111-114 ◽  
Author(s):  
Eric R. Vance ◽  
S.A. Moricca ◽  
M.W.A. Stewart

Intermediate level waste from ANSTO’s expanded 99Mo production plant will consist of ~5000L/year of 6M NaOH + 1.4 NaAlO2 + fission products. Detailed engineering is being carried out on a synroc plant to immobilise this waste in a glass-ceramic, with completion scheduled for 2016. The liquid waste will be mixed with precursors and dried before being calcined in a reducing atmosphere to control fission product volatility. The calcine will be transferred to 30L metal cans which will be hot isostatically pressed at 1000°C/30MPa for 2h, then cooled to room temperature and stored preparatory to final disposal. Laboratory scale waste form material will pass 90°C PCT tests. In addition, legacy intermediate level uranyl nitrate-based liquid waste from 99Mo production at ANSTO between the 1980s and 2005 via irradiation of UO2 targets will also be immobilised by the same process to form a Synroc-type waste form. Some examples illustrating the wide applicability of hot isostatic pressing to consolidate nuclear waste forms will be given showing the advantages for particular wastes, notably high waste loadings and the absence of off-gas in the high temperature consolidation step. The immobilisation of a variety of low-level liquid and solid wastes from 99Mo production will also be discussed.


1994 ◽  
Vol 353 ◽  
Author(s):  
William J. Weber ◽  
Rodney C. Ewing

AbstractSite restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at the same DOE facilities involve working with and within various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. This paper reviews the impact of radiation fields on site restoration activities and on the release rate of radionuclides to the biosphere from nuclear waste forms.


1997 ◽  
Vol 481 ◽  
Author(s):  
B. G. Storey ◽  
T. R. Allen

ABSTRACTGlass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefming process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.8 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.


1983 ◽  
Vol 60 (2) ◽  
pp. 178-198 ◽  
Author(s):  
William J. Weber ◽  
Frank P. Roberts

1999 ◽  
Vol 556 ◽  
Author(s):  
S. G. Johnson ◽  
D. D. Keiser ◽  
M. Noy ◽  
T. O'Holleran ◽  
S. M. Frank

AbstractArgonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/ 1–4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2.14E5 years, and its mobility in groundwater. To address these concerns a limited number of spiked metal waste forms were produced containing Tc. These surrogate waste forms were then studied using scanning electron microscopy (SEM) and selected leaching tests.


Sign in / Sign up

Export Citation Format

Share Document