An Examination of the Deformation Process in Equal-Channel Angular Pressing

1999 ◽  
Vol 601 ◽  
Author(s):  
Patrick B. Berbon ◽  
Minoru Furukawa ◽  
Zenji Horita ◽  
Minoru Nemoto ◽  
Terence G. Langdon

AbstractIn the past decade, there has been an important emphasis in materials science on the production and use of ultrafine-grained materials. These materials offer wide-ranging advantages such as an improvement in strength at low temperatures and enhanced superplastic behavior at high temperatures. New techniques to process these materials have been developed. Good properties have been achieved by powder metallurgy and by techniques of bulk processing. Equal-channel angular (ECA) pressing is a bulkprocessing technique which has led to some remarkable achievements in the production of sub-microcrystalline materials with excellent superplastic properties at low temperatures and high strain rates. When considering the currently available physical and mechanical properties of these materials, it appears that some aspects cannot be explained solely by the very small grain size. In fact, the specific mode of deformation occurring in ECA pressing appears to have an influence on the final properties. This paper reviews the details of this metal working technique and then provides an explanation for the observed microstructures, their thermal stability and their remarkable superplastic properties.

2008 ◽  
Vol 579 ◽  
pp. 29-40 ◽  
Author(s):  
Cheng Xu ◽  
Megumi Kawasaki ◽  
Roberto B. Figueiredo ◽  
Zhi Chao Duan ◽  
Terence G. Langdon

Equal-channel angular pressing (ECAP) is a convenient processing method for refining the grain size of bulk materials to the submicrometer level. Metallic alloys processed by ECAP often exhibit excellent superplastic characteristics including superplasticity at high strain rates. This paper summarizes recent experiments designed to evaluate the occurrence of superplasticity in representative aluminum and magnesium alloys and in the Zn-22% Al eutectoid alloy.


2017 ◽  
Vol 743 ◽  
pp. 203-206 ◽  
Author(s):  
Alexander A. Kozulin ◽  
Vladimir A. Krasnoveikin ◽  
Vladimir A. Skripnyak ◽  
Evgeny N. Moskvichev ◽  
Valery E. Rubtsov

This study examines the effect of severe plastic deformation on the physical and mechanical properties of a light structural Al-Mg alloy. Severe plastic deformation has been performed by equal channel angular pressing through a die with an angle of 90° between the channels to produce ultrafine-grained structure in specimens of studied alloy. A complex investigation of the physical and mechanical properties of the processed alloy has been carried out to examine the microstructure and texture, and to measure microhardness, yield stress and ultimate tensile strength. The obtained results demonstrate high efficiency of the chosen treatment method and mode of producing a light ultrafine-grained alloy.


2016 ◽  
Vol 838-839 ◽  
pp. 338-343 ◽  
Author(s):  
Sergey Malopheyev ◽  
Sergey Mironov ◽  
Igor Vysotskiy ◽  
Rustam Kaibyshev

The commercial Al-5.4Mg-0.2Sc-0.1Zr alloy was subjected to equal-channel angular pressing at 300°C to a true strain ~12 followed by cold rolling to a total thickness reduction of 80%. The ultrafine-grained sheets were joined by friction stir welding (FSW). To evaluate superplastic properties of the weldments, the tensile samples including all of the characteristic FSW microstructural zones were machined perpendicular to the welding direction and pulled up to failure in the temperature range of 400 to 500°C and at strain rates of 2.8×10-4 s-1 to 5.6×10-1 s-1. The friction-stir welded material exhibited excellent superplastic properties. The highest elongation-to-failure of ~1370% was recorded at a temperature of ~450°C and an initial strain rate of 5.6×10-2 s-1, where the strain rate sensitivity coefficient was about 0.64. The relationship between superplastic ductility and microstructure is discussed.


2016 ◽  
Vol 863 ◽  
pp. 50-56 ◽  
Author(s):  
Song Jeng Huang ◽  
S.V. Chertovskikh ◽  
V.I. Semenov ◽  
L.Sh. Shuster

The conditions are substantiated for the loss of thermodynamic stability of a tribosystem and for its adaptation with a decreasing wear rate at the moving frictional contact of parts from commercially pure titanium with an ultrafine-grained structure produced by equal-channel angular pressing. The regularities of the influence of the structure's dispersion degree and the friction contact's temperature on the tribotechnical characteristics of ultrafine-grained materials are established theoretically and experimentally.


2014 ◽  
Vol 1013 ◽  
pp. 7-14
Author(s):  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) leads to very significant grain refinement with grains that are typically in the submicrometer or even the nanometer range. These ultrafine-grained (UFG) materials provide an opportunity for achieving exceptional flow properties including high strength at ambient temperature and, if the very small grains are reasonably stable, superplastic elongations at high testing temperatures. These flow characteristics are examined for materials processed using the two SPD procedures of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT).


2013 ◽  
Vol 773-774 ◽  
pp. 160-165
Author(s):  
Guan Yu Deng ◽  
C. Lu ◽  
Li Hong Su ◽  
Mao Liu ◽  
Pei Tang Wei ◽  
...  

Equal channel angular pressing (ECAP) has attracted a lot of interest due to its ability for fabrication of bulk ultrafine-grained materials. With the development of computer skills, the computer-aided methods become very important and useful in understanding the deformation mechanism of ECAP. In this study, the influence of mesh size during finite element simulations of ECAP has been examined based on the plane strain condition assumption. Four different meshes have been compared and these results indicate that Mesh 600 and Mesh 2400 fail to capture the deformation features of ECAP accurately. Large corner gaps develop in these two cases and the simulated strains are smaller than the analytical calculations. Similar results have been obtained between Mesh 6369 and Mesh 12000 and the predicted features of plastic deformation and texture evolution are consistent with the experimental results.


2003 ◽  
Vol 419-422 ◽  
pp. 551-556 ◽  
Author(s):  
Yuichi Miyahara ◽  
Kiyoshi Matsubara ◽  
Koji Neishi ◽  
Z. Horita ◽  
Terence G. Langdon

Sign in / Sign up

Export Citation Format

Share Document