scholarly journals 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

2000 ◽  
Vol 646 ◽  
Author(s):  
J. Daniel Whittenberger ◽  
S.V. Raj ◽  
Ivan. E. Locci

ABSTRACTThe Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (≤ 12.7 mm/h), while faster growth rates (≥ 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

2012 ◽  
Vol 562-564 ◽  
pp. 477-481
Author(s):  
Rui Xu

The directional solidification of the ternary Al alloy with composition of 2.6 at%Ni, 0.9 at%Y and 96.5 at% Al was carried out under the temperature gradient of 5 K/mm and the droping velocities of 0.5 mm/min, 1 mm/min, 5 mm/min, 10 mm/min, and 25 mm/min. The microstructure of the Al-Ni-Y ternary alloy was also analyzed by X-ray diffraction and optical microscope. The experimental results show that the microstructures of the Al-Ni-Y ternary alloy are consisted of ª-Al2, Al3Ni and Y4Ni6Al23phase when the alloy was directionally solidified in all directionally solidified rates in the experiments. No primary -Al can be found in the sample with directionally solidified rate of 0.5 mm/min. When the rates higher than 1 mm/min, the primary ª-Al can be observed. The microstructure of the directionally solidified alloy becomes finer and the primary ª-Al is smaller gradually with the increasing of growth velocities when the dropping rate of directional solidification is higher than 5 min/min. Two eutectic structures, Y4Ni6Al23andª-Al eutectic and Al3Ni and ª-Al eutectic, can be found when the dropping rate is higher than 10 mm/min.


2016 ◽  
Vol 99 ◽  
pp. 10-20 ◽  
Author(s):  
Qiang Wang ◽  
Hongsheng Ding ◽  
Hailong Zhang ◽  
Shiqiu Liu ◽  
Ruirun Chen ◽  
...  

2017 ◽  
Vol 48 (12) ◽  
pp. 5911-5923 ◽  
Author(s):  
Emine Acer ◽  
Emin Çadırlı ◽  
Harun Erol ◽  
Hasan Kaya ◽  
Mehmet Gündüz

2006 ◽  
Vol 980 ◽  
Author(s):  
Hongbin Bei ◽  
E. P. George

AbstractFe-Co-V-C quaternary alloys were drop cast and directionally solidified to obtain an in situ composite. It is found that the fully eutectic structure occurs at a composition of Fe - 40.5Co -10.4V- 8.6C (at. %) in a drop-cast alloy. Directional solidification of this composition in a high-temperature optical floating zone furnace produces a well-aligned microstructure, consisting of sub-micron VC fibers (~19% by volume) embedded in a FeCo-5V solid solution matrix containing ~ 1% C. The temperature dependencies of mechanical properties of this composite were examined by tensile tests and the composite was found to have higher yield strength and lower ductility than the matrix.


2013 ◽  
Vol 765 ◽  
pp. 215-219 ◽  
Author(s):  
Emine Acer ◽  
Harun Erol ◽  
Mehmet Gündüz

Al-5 wt.% Zn samples were prepared using high purity (99.99%) metals in graphite crucibles. The samples were directionally solidified upward with a constant temperature gradient (G= 5.5 Kmm-1) and different growth rates,V, (8.25-165 μm/s) in a Bridgman type directional solidification apparatus. The dendritic spacings (λ1: Primary dendrite arm spacing, and λ2: Secondary dendrite arm spacing) were measured from the longitudinal sections of the samples and λ1was also measured from the transverse sections. The measured spacings were expressed as functions of the growth rates by using a linear regression analysis. The effect ofVon λ1and λ2were investigated. The experimental results were compared with the results of the current theoretical and numerical models and similar previous experimental results.


2011 ◽  
Vol 117-119 ◽  
pp. 217-221
Author(s):  
Rui Run Chen ◽  
Hong Sheng Ding ◽  
Jing Jie Guo ◽  
Yan Qing Su ◽  
Heng Zhi Fu

The ingot of Ti47Al alloy was prepared by a newly developed rapid directional solidification, the microstructure and compressive properties of the ingot was observed and tested. The results show that the macrostructure consisted mainly of coarse columnar grains parallel to the axial direction, with the size of 0.5mm wide and 10mm in length. The direction of lamellar is almost perpendicular to the growth direction in the longitudinal section and no dendritic core is found. The average ultimate compressive strength of the specimens with grain growth parallel/perpendicular to the compressive direction is 1233.3 and 861.7 MPa respectively. The fracture mode for specimens with grain growth parallel to the compressive direction exhibits predominantly translamellar fracture, however, that for specimens with grain growth perpendicular to the compressive direction exhibits predominantly delamenation or interlamellar fracture.


Sign in / Sign up

Export Citation Format

Share Document