The Heteroepitaxial Nucleation and Growth of Metal Oxides by Llvsztu Oxidation

2000 ◽  
Vol 648 ◽  
Author(s):  
Mridula D. Bharadwaj ◽  
Gnang-wen Zhou ◽  
Judith C. Yang

AbstractHere we report our investigations on the initial stages of Cu(OO1) oxidation in dry and moist atmosphere using in situ ultra high vacuum (UHV) transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cu20 islands were observed to grow 3-dimensionally into the Cu film as seen through the above mentioned techniques. Further, we discuss our interpretation of the experimental observations that presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu20 shows surprising reduction when exposed to water vapor.

2000 ◽  
Vol 619 ◽  
Author(s):  
Judith C. Yang ◽  
Mridula Dixit Bharadwaj ◽  
Lori Tropia

ABSTRACTWe have investigated the initial stages of Cu (001) oxidation in dry and moist oxidizing conditions using in situ ultra-high vacuum (UIHV) transmission electron microscopy (TEM). To investigate the role of moisture in the solid state reactions in Cu oxidation, we have examined the oxidation of Cu (001) with water vapor. Our observation indicate that water vapor causes reduction of Cu2O and retards the oxidation rate if both oxygen gas and water vapor are used simultaneously which contradicts the thermochemical data. We are also modeling the nucleation to coalescence of the oxide scale using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and have noted a qualitative agreement.


2001 ◽  
Vol 7 (6) ◽  
pp. 486-493 ◽  
Author(s):  
Judith C. Yang ◽  
Mridula D. Bharadwaj ◽  
Guangwen Zhou ◽  
Lori Tropia

AbstractWe review our studies of the initial oxidation stages of Cu(001) thin films as investigated by in situ ultra-high vacuum transmission electron microscopy. We present our observations of surface reconstruction and the nucleation to coalescence of copper oxide during in situ oxidation in O2. We have proposed a semi-quantitative model, where oxygen surface diffusion is the dominant mechanism of the initial oxidation stages of Cu. We have also investigated the effect of water vapor on copper oxidation. We have observed that the presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu2O is reduced when exposed directly to steam.


1999 ◽  
Vol 589 ◽  
Author(s):  
D. T. L. Van Agterveld ◽  
G. Palasantzas ◽  
J.Th.M. De Hosson

AbstractUltra-high-vacuum segregation studies on in-situ fractured Cu-Sb alloys were performed in terms of nanometer scale scanning Auger/Electron microscopy. S contamination leads to the formation of Cu2S precipitates which, upon removal due to fracture, expose pits with morphology that depends on the precipitate size and shape. Local variations of S and Sb distributions inside the pits were correlated to local surface orientations as Atomic Force Microscopy analysis revealed.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Li Sun ◽  
John E. Pearson ◽  
Judith C. Yang

AbstractThe nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 608-609
Author(s):  
Ruud M. Tromp

To obtain a full and detailed understanding of the spatiotemporal dynamics of surface processes such as epitaxial growth, strain relaxation, phase transformations and phase transitions, chemisorption and etching, in situ real-time observations have proven to be invaluable. The development of two experimental techniques, i.e. Low Energy Electron Microscopy (LEEM) typically operating at electron energies below 10 eV, and Ultra-High-Vacuum Transmission Electron Microscopy (UHV-TEM) at several 100 keV, has made such in situ studies routinely possible. In many cases, the videodata obtained from such experiments are amenable to detailed, quantitative analysis, yielding statistical, kinetic and thermodynamic information that cannot be obtained in any other way.I will discuss recent experimental developments, including the design and construction of a new and improved LEEM instrument. Figure 1 shows a schematic diagram of this new machine. There are several features that distinguishes this design from most other LEEMs. One is the use of a 90 degree deflection magnetic prism array,


Sign in / Sign up

Export Citation Format

Share Document