Ion Beam Enhanced Formation and Luminescence of Si Nanoclusters from a-SiOx

2000 ◽  
Vol 650 ◽  
Author(s):  
Yohan Sun ◽  
Se-Young Seo ◽  
Jung H. Shin ◽  
T. G. Kim ◽  
C. N. Whang ◽  
...  

ABSTRACTThe effect of ion beams on the formation of Si nanoclusters from a-SiOx films and their luminescence properties is investigated. a-SiOx films with Si content ranging from 33 to 50 at. % were deposited by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR-PECVD) of SiH4 and O2. Prior to anneal, some samples were implanted with 380 keV Si to a dose ranging from 5.7 × 1014 cm-2 to 5.7 × 1016 cm-2. All films were rapid thermal annealed under flowing Ar environment, and hydrogenated after anneals to passivate defects and to enhance the luminescence of Si nanoclusters. For films with Si content less than 40 at. %, ion beam slightly reduces the photoluminescence (PL) intensity and induces a slight blueshift of the luminescence. For films with Si content greater than 40 at. %, ion beam greatly increases the PL intensity. Based on the effect of the ion beams dose and the ion specie, we propose that ion beams damage greatly promotes nucleation of small Si clusters from the a-SiOx matrix.

2000 ◽  
Vol 647 ◽  
Author(s):  
Yohan Sun ◽  
Se-Young Seo ◽  
Jung H. Shin ◽  
T. G. Kim ◽  
C. N. Whang ◽  
...  

AbstractThe effect of ion beams on the formation of Si nanoclusters from a-SiOx films and their luminescence properties is investigated. a-SiOx films with Si content ranging from 33 to 50 at. % were deposited by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR-PECVD) of SiH4 and O2. Prior to anneal, some samples were implanted with 380 keV Si to a dose ranging from 5.7 × 1014 cm−2 to 5.7 × 1016 cm−2. All films were rapid thermal annealed under flowing Ar environment, and hydrogenated after anneals to passivate defects and to enhance the luminescence of Si nanoclusters. For films with Si content less than 40 at. %, ion beam slightly reduces the photoluminescence (PL) intensity and induces a slight blueshift of the luminescence. For films with Si content greater than 40 at. %, ion beam greatly increases the PL intensity. Based on the effect of the ion beams dose and the ion specie, we propose that ion beams damage greatly promotes nucleation of small Si clusters from the a-SiOx matrix.


1997 ◽  
Vol 486 ◽  
Author(s):  
Jung H. Shin ◽  
Mun-Jun Kim ◽  
Se-Young Seo ◽  
Choochon Lee

AbstractThe composition dependence of room temperature 1.54 μ Er3+ photoluminescence of erbium doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium is investigated. The Si:O ratio was varied from 3:1 to 1:2 and the annealing temperature was varied from 500 to 900 °C. The most intense Er3+ luminescence is observed from the sample with Si:O ratio of 1:1.2 after 900 °C anneal and formation of silicon nanoclusters embedded in SiO2 matrix. High active erbium fraction, efficient excitation via carriers, and high luminescence efficiency due to high quality SiO2 matrix are identified as key factors in producing the intense Er3+ luminescence.


Sign in / Sign up

Export Citation Format

Share Document