GMT - A Large Scale In-Situ Test of the Gas Migration Properties of Engineered Barriers

2000 ◽  
Vol 663 ◽  
Author(s):  
S. Vomvoris ◽  
P. Marschal ◽  
W. Kickmaier ◽  
K. Ando ◽  
M. Fukaya ◽  
...  

ABSTRACTThe GMT experiment (Figure 1) was initiated in the summer of 1997 under the auspices of RWMC (Radioactive Waste Management Center, Japan). It is part of the experiments conducted within Phase V (1997-2002) of Nagra's Underground Rock Laboratory at Grimsel, in the Swiss Alps [1]. The currents status and results from the site characterization activities and laboratory studies are presented. Future plans are also outlined.

2002 ◽  
Vol 757 ◽  
Author(s):  
S. Vomvoris ◽  
B. Lanyon ◽  
P. Marschall ◽  
K. Ando ◽  
T. Adachi ◽  
...  

ABSTRACTThe Gas Migration Test in the engineered barrier system (GMT) investigates the migration of waste-generated gas from low and intermediate level waste in a silo-type disposal concept. The EBS has now been emplaced and saturation was initiated in August 2001. The saturation patterns show heterogeneity within and between different layers of the EBS. Plans for the remaining test sequence are also presented.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


Author(s):  
Bruno Kursten ◽  
Frank Druyts ◽  
Pierre Van Iseghem

Abstract The current worldwide trend for the final disposal of conditioned high-level, medium-level and long-lived alpha-bearing radioactive waste focuses on deep geological disposal. During the geological disposal, the isolation between the radioactive waste and the environment (biosphere) is realised by the multibarrier principle, which is based on the complementary nature of the various natural and engineered barriers. One of the main engineered barriers is the metallic container (overpack) that encloses the conditioned waste. In Belgium, the Boom Clay sediment is being studied as a potential host rock formation for the final disposal of conditioned high-level radioactive waste (HLW) and spent fuel. Since the mid 1980’s, SCK•CEN has developed an extensive research programme aimed at evaluating the suitability of a wide variety of metallic materials as candidate overpack material for the disposal of HLW. A multiple experimental approach is applied consisting of i) in situ corrosion experiments, ii) electrochemical experiments (cyclic potentiodynamic polarisation measurements and monitoring the evolution of ECORR as a function of time), and iii) immersion experiments. The in situ corrosion experiments were performed in the underground research facility, the High Activity Disposal Experimental Site, or HADES, located in the Boom clay layer at a depth of 225 metres below ground level. These experiments aimed at predicting the long-term corrosion behaviour of various candidate container materials. It was believed that this could be realised by investigating the medium-term interactions between the container materials and the host formation. These experiments resulted in a change of reasoning at the national authorities concerning the choice of over-pack material from the corrosion-allowance material carbon steel towards corrosion-resistant materials such as stainless steels. The main arguments being the severe pitting corrosion during the aerobic period and the large amount of hydrogen gas generated during the subsequent anaerobic period. The in situ corrosion experiments however, did not allow to unequivocally quantify the corrosion of the various investigated candidate overpack materials. The main shortcoming was that they did not allow to experimentally separate the aerobic and anaerobic phase. This resulted in the elaboration of a new laboratory programme. Electrochemical corrosion experiments were designed to investigate the effect of a wide variety of parameters on the localised corrosion behaviour of candidate overpack materials: temperature, SO42−, Cl−, S2O32−, oxygen content (aerobic - anaerobic),… Three characteristic potentials can be derived from the cyclic potentiodynamic polarisation (CPP) curves: i) the open circuit potential, OCP, ii) the critical potential for pit nucleation, ENP, and iii) the protection potential, EPP. Monitoring the open circuit potential as a function of time in clay slurries, representative for the underground environment, provides us with a more reliable value for the corrosion potential, ECORR, under disposal conditions. The long-term corrosion behaviour of the candidate overpack materials can be established by comparing the value of ECORR relative to ENP and EPP (determined from the CPP-curves). The immersion tests were developed to complement the in situ experiments. These experiments aimed at determining the corrosion rate and to identify the corrosion processes that can occur during the aerobic and anaerobic period of the geological disposal. Also, some experiments were elaborated to study the effect of graphite on the corrosion behaviour of the candidate overpack materials.


1997 ◽  
Vol 506 ◽  
Author(s):  
A. Gens ◽  
E.E. Alonso ◽  
A. Garcia-Molina ◽  
F. Huertas ◽  
J.L. Santiago

ABSTRACTThis paper reports the coupled thermo-hydro-mechanical (THM) analyses of the “in situ” test carried out during the pre-operational stage of the FEBEX project. The determination of parameters has been performed using the results of the characterization stage and other available information. The results of the analyses provide a good understanding of expected test behaviour. This understanding is enhanced by the performance of a quite extensive programme of 1-D sensitivity analyses in which the values of critical parameters are varied. Two dimensional effects are discussed on the basis of the results of 2-D axisymmetric THM analyses carried out using a longitudinal section that provides a better representation of real test geometry.


2012 ◽  
Vol 49 (10) ◽  
pp. 1169-1195 ◽  
Author(s):  
M. Sánchez ◽  
A. Gens ◽  
L. Guimarães

A geological disposal facility for high-level radioactive waste (HLW) encompasses both natural (host rock) and (generally clay-based) engineered barriers. Many processes can influence, either positively or negatively, the effectiveness of the safety functions of isolation and retardation. This paper focuses on the analysis of a large-scale heating test when subjected to cooling and subsequent partial dismantling. The experiment reproduces the conditions of an HLW repository at full scale under realistic conditions. Key thermal, hydraulic, and mechanical (THM) variables, such as temperature, relative humidity, stresses, and fluid pressures, were measured in the clay barrier and surrounding rock. The experimental observations recorded during the cooling down and clay barrier excavation are analyzed in light of a fully coupled THM finite element formulation. This analysis has provided the opportunity to explore the behaviour of the clay and natural barriers under conditions very relevant for the repository performance but not analyzed previously. Overall, the model predictions are quite satisfactory when compared against experimental observations. Furthermore, model predictions for a period of 20 years, including the transient phase induced by the partial dismantling, are also presented. This additional analysis has allowed a better understanding of the effect of thermal gradient on long-term clay hydration.


Author(s):  
Wenbin Yang ◽  
Rebecca J Lunn ◽  
Alessandro Tarantino ◽  
Gráinne El Mountassir

Geological disposal facilities for radioactive waste pose significant challenges for robust monitoring of environmental conditions within the engineered barriers that surround the waste canister. Temperatures are elevated, due to the presence of heat generating waste, relative humidity varies from 20% to 100%, and swelling pressures within the bentonite barrier can typically be 2-10 MPa. Here, we test the robustness of a bespoke design MEMS sensor-based monitoring system, which we encapsulate in polyurethane resin. We place the sensor within an oedometer cell and show that despite a rise in swelling pressure to 2 MPa, our relative humidity (RH) measurements are unaffected. We then test the sensing system against a traditional RH sensor, using saturated bentonite with a range of RH values between 50% and 100%. Measurements differ, on average, by 2.87% RH, and a particularly far apart for high values of RH. However, bespoke calibration of the MEMS sensing system using saturated solutions of known RH, reduces the measurement difference to an average of 1.97% RH, greatly increasing the accuracy for RH values close to 100%.


Sign in / Sign up

Export Citation Format

Share Document