Effect of CdTe thickness reduction in high efficiency CdS/CdTe solar cells

2001 ◽  
Vol 668 ◽  
Author(s):  
Akhlesh Gupta ◽  
I. Matulionis ◽  
J. Drayton ◽  
A.D. Compaan

ABSTRACTHigh efficiency CdTe solar cells are typically grown with CdTe thicknesses from 3 to 15 μm, although the thickness required for 90% absorption of the incident irradiation at 800 nm is only ∼1 μm. In this paper, we present the effect of CdTe thickness reduction on the performance of CdS/CdTe solar cells in which both the CdS and CdTe films were grown by sputtering. We produced a series of cells with different CdTe thickness (from 0.5 to 3.0 μm), and held the CdS thickness and back-contact-processing constant. The effect of CdTe thickness reduction on the diffusion of CdS into CdTe was studied using optical absorption and x-ray diffraction techniques. Only slight decreases occur in open-circuit voltage, short-circuit current, and fill factor with decrease in CdTe film thickness to 1.0 μm. Almost 10% efficient cells were obtained with 1 μm CdTe. Below 1 μm, all cell parameters decrease more rapidly, including the red quantum efficiency.

2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


2014 ◽  
Vol 665 ◽  
pp. 111-114 ◽  
Author(s):  
Ying Huang ◽  
Xiao Ming Shen ◽  
Xiao Feng Wei

In this paper, InAlN/Si single-heterojunction solar cells have been theoretically simulated based on wxAMPS software. The photovoltaic parameters, such as open circuit voltage, short circuit current, fill factor and conversion efficiency were investigated with changing the indium content and thickness of n-InAlN layer. Simulation results show that the optimum efficiency of InAlN/Si solar cells is 23.1% under AM 1.5G spectral illuminations, with the indium content and thickness of n-InAlN layer are 0.65 and 600nm, respectively. The simulation would contribute to design and fabricate high efficiency InAlN/Si solar cells in experiment.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 43
Author(s):  
Rachid Herbazi ◽  
Youssef Kharchouf ◽  
Khalid Amechnoue ◽  
Ahmed Khouya ◽  
Adil Chahboun

This work presents a method for extracting parameters from photovoltaic (PV) solar cells, based on the three critical points of the current-voltage (I-V) characteristic, i.e., the short-circuit current, the open circuit voltage and the maximum power point (MPP). The method is developed in the Python programming language using differential evolution (DE) and a three-point curve fitting approach. It shows a good precision with root mean square error (RMSE), for different solar cells, lower than to those cited in the literature. In addition, the method is tested based on the measurements of a solar cell in the Faculty of Science and Technology of Tangier (FSTT) laboratory, thus giving a good agreement between the measured data and those calculated (i.e., RMSE = 7.26 × 10−4) with fewer iterations for convergence.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1788 ◽  
Author(s):  
Karla Gutierrez Z-B ◽  
Patricia G. Zayas-Bazán ◽  
Osvaldo de Melo ◽  
Francisco de Moure-Flores ◽  
José Andraca-Adame ◽  
...  

The preparation of ultra-thin semi-transparent solar cells with potential applications in windows or transparent roofs entails several challenges due to the very small thickness of the layers involved. In particular, problems related to undesired inter-diffusion or inhomogeneities originated by incomplete coverage of the growing surfaces must be prevented. In this paper, undoped SnO2, CdS, and CdTe thin films with thickness suitable for use in ultra-thin solar cells were deposited with a radiofrequency (RF) magnetron sputtering technique onto conductive glass. Preparation conditions were found for depositing the individual layers with good surface coverage, absence of pin holes and with a relatively small growth rate adapted for the control of very small thickness. After a careful growth calibration procedure, heterostructured solar cells devices were fabricated. The influence of an additional undoped SnO2 buffer layer deposited between the conductive glass and the CdS window was studied. The incorporation of this layer led to an enhancement of both short circuit current and open circuit voltage (by 19 and 32%, respectively) without appreciable changes of other parameters. After the analysis of the cell parameters extracted from the current-voltage (I-V) curves, possible origins of these effects were found to be: Passivation effects of the SnO2/CdS interface, blocking of impurities diffusion or improvement of the band alignment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Antonino Parisi ◽  
Riccardo Pernice ◽  
Vincenzo Rocca ◽  
Luciano Curcio ◽  
Salvatore Stivala ◽  
...  

We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters—characteristic of such devices—with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depend on CIGS band gap. Our numerical analysis highlights that the band gap value of 1.40 eV is optimal, but both the presence of Molybdenum back contact and the high carrier recombination near the junction noticeably reduce the crucial electrical parameters. For the above-mentioned reasons, we have demonstrated that the efficiency obtained by conventional CIGS cells is lower if compared to the values reached by our proposed graded carrier concentration profile structures (up to 21%).


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Cristian Moisés Díaz-Acosta ◽  
Antonia Martínez-Luévanos ◽  
Sofía Estrada-Flores ◽  
Lucia Fabiola Cano-Salazar ◽  
Elsa Nadia Aguilera-González ◽  
...  

ABSTRACT Solar energy is one of the most promising and developed technologies in recent years, due to its high efficiency and low cost. Perovskite-type solar cells have been the focus of attention by the world scientific community. The main objective of this article is to present an (PSCs) analysis of the various investigations reported on the development of ABX3 inorganic halide perovskite-based solar cells, with emphasis in the effect that temperature and humidity have on their chemical and crystal structure stability. The main methods that are used to obtain ABX3 inorganic halide perovskites are also presented and analyzed. An analysis about the structure of these photovoltaic cells and how to improve their efficiency (PCS), fill factor (FF), short circuit current density (Jsc) and open circuit voltage (Voc) of these devices is presented. As a conclusion, a relationship of the methods, synthesis variables, and type of inorganic halide perovskite used for the development of devices with the best efficiencies is presented; the trends towards which this area of science is heading are also highlighted.


2021 ◽  
Author(s):  
Venkanna Kanneboina

Abstract This paper presents the influence of defect states and thickness of interface layer on high efficiency of c-Si/a-Si:H heterojunction solar cells with higher bandgap emitter a-Si:H(p) layer by AFORSHET simulation tool. At first, the performance of Ag/ZnO/a-Si:H(p)/ a-Si:H(i)/ c-Si(n)/ a-Si:H(i)/ a-Si:H(n)/Ag heterojunction solar cells was studied by altering the thickness of a-Si:H(p) and a-Si:H(i) layers. The best values of open circuit voltage (Voc) (764.8 mV), short circuit current density (Jsc) (43.15 mA/cm2), fill factor (FF) (85.71) and efficiency(ɳ) (28.28%) were obtained at 3 nm of a-Si:H(p) and a-Si:H(i) layer. In the same structure, c-Si(n) interface was introduced in between c-Si(n) and a-Si:H(i) layer. It is found that the solar cell performance was not changed by varying defect density from 109-1014 cm-3 for thin (5 and 10 nm) interface layer and estimated values are 761.7 mV, 38.83 mA/cm2, 86.09%, 25.46% correspond to Voc, Jsc, FF, ɳ respectively. For very thick interface layer, defect density has shown huge impact on the device performance. At 1 µm, the Voc, FF and ɳ values have been changed from 760.2 to 653.2 mV, 85.9 to 80.76% and 22.94 to 18.47% for the defect density of 109 to 1014 cm-3 respectively.


1996 ◽  
Vol 426 ◽  
Author(s):  
H. Stiebig ◽  
Th. Eickhoff ◽  
J. Zimmer ◽  
C. Beneking ◽  
H. Wagner

AbstractIn contrast to the successful application of analytic equations to the current-voltage behaviour of crystalline silicon solar cells in the dark and under AM1.5 illumination, the description of a-Si:H solar cells parameters requires device modelling concepts taking the full set of semiconductor equations into account. This in particular holds for the explanation of the temperature dependence (225–400K) of experimentally determined a-Si:H p-i-n solar cell parameters. Device modelling calculations show that the observed decrease of the short circuit current at AM 1.5 with lower T is much more effected by the additional charge trapped in the tail states and recharging of defect states than by the broadening of the gap. The induced electric field distortion blocks the extraction of photo generated holes. The open circuit voltage Voc increases with lower T which is caused by the same trapping effect.


2019 ◽  
Vol 966 ◽  
pp. 501-506
Author(s):  
Ahmad Sholih ◽  
Dadan Hamdani ◽  
Sigit Tri Wicaksono ◽  
Mas Irfan P. Hidayat ◽  
Yoyok Cahyono ◽  
...  

In this paper, we have investigated the effect of the work function of transparent conducting oxides (TCO) on the performance of a-Si:H p-i-n solar cells, including open circuit voltage (VOC), short circuit current (JSC), fill factor (FF) and conversion efficiency, using AFORS-HET software. The simulation has focused on two layers: front contact work function (ΦTCO-front) and back contact work function (ΦTCO-back) with various band from 4.7 eV to 5.3 eV and 4.2 eV to 4.9 eV respectively. From the simulation results, we know that the work function of TCO greatly affects the performance of solar cells such as Voc, Jsc, FF and conversion efficiency. By optimization, we arrive at results for Voc, Jsc, FF and conversion efficiencies of 0.88 V, 8.95 mA / cm2, 65% and 5.1% respectively. This result is obtained on ΦTCO-front 5.2 eV. When ΦTCO-front 5.2 eV, the value of VOC, FF and conversion efficiency has been saturated, while the value of the J sc actually begins to decrease. Furthermore, when the ΦTCO - back is 4.3 eV, we get the best results for VOC, Jsc, FF and conversion Efficiency of 0.9 V, 8.96 mA / cm2, 73 % and 5.9 % respectively. When ΦTCO-back 4.3 eV, the value of VOC, FF and conversion efficiency begins to decrease, while the value of the Jsc does’t change significantly. These optimizations may help in producing low cost high efficiency p-i-n solar cells experimentally.


1996 ◽  
Vol 420 ◽  
Author(s):  
H. Stiebig ◽  
Th. Eickhoff ◽  
J. Zimmer ◽  
C. Beneking ◽  
H. Wagner

AbstractIn contrast to the successful application of analytic equations to the current-voltage behaviour of crystalline silicon solar cells in the dark and under AM 1.5 illumination, the description of a-Si:H solar cells parameters requires device modelling concepts taking the full set of semiconductor equations into account. This in particular holds for the explanation of the temperature dependence (225-400K) of experimentally determined a-Si:H p-i-n solar cell parameters. Device modelling calculations show that the observed decrease of the short circuit current at AM 1.5 with lower T is much more effected by the additional charge trapped in the tail states and recharging of defect states than by the broadening of the gap. The induced electric field distortion blocks the extraction of photo generated holes. The open circuit voltage Voc increases with lower T which is caused by the same trapping effect.


Sign in / Sign up

Export Citation Format

Share Document