Heteroepitaxial growth of TaN on MgO(001) and TiN(001)/Si(001) by pulsed laser deposition

2001 ◽  
Vol 672 ◽  
Author(s):  
H. Y. Cheung ◽  
K.H. Wong

ABSTRACTEpitaxial TaN(001) films have been successfully grown on MgO(001) single crystal and TiN(001) buffered Si(001) substrates by pulsed laser deposition method. Crystalline TaN layers of about 100 nm thick were deposited under a base pressure of 5 × 10−6 Torr and at substrate temperatures ranging from 500°C to 700°C. X-ray diffraction results suggested that stoichiometric TaN films with cube-on-cube <001>TaN∥<001>MgO heteroepitaxy are obtained in this temperature range. Plan-view and cross-sectional electron microscopy analysis revealed excellent structural quality and sharp interface boundary. TaN films grown on TiN(001) buffered Si(001), however, showed a mixture of TaNx (with x ≤ 1) components. Although the (001)-orientated TaN is always present prominently, the nitrogen deficient TaNx components are often co-existed in the films and show up as a broad peak in the X-ray diffraction profile. Stoichiometric and single phase TaN(001) films can only be obtained in a narrow temperature window at around 550oC and heteroepitaxial relation <001>TaN∥<001>TiN∥<001>Si has been demonstrated.

2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


2001 ◽  
Vol 16 (9) ◽  
pp. 2467-2470 ◽  
Author(s):  
J. C. Caylor ◽  
M. S. Sander ◽  
A. M. Stacy ◽  
J. S. Harper ◽  
R. Gronsky ◽  
...  

Heteroepitaxial growth of the cubic skutterudite phase CoSb3 on (001) InSb substrates was achieved by pulsed laser deposition using a substrate temperature of 270 °C and a bulk CoSb3 target with 0.75 at.% excess Sb. An InSb (a0 = 4 0.6478 nm) substrate was chosen for its lattice registry with the antimonide skutterudites (e.g., CoSb3 with a = 0 4 0.9034 nm) on the basis of a presumed 45° rotated relationship with the InSb zinc blende structure. X-ray diffraction and transmission electron microscopy confirmed both the structure of the films and their epitaxial relationship: (001)CoSb3 ∥ (001)InSb; [100]CoSb3 ∥ [110]InSb.


1999 ◽  
Vol 580 ◽  
Author(s):  
A. Kvit ◽  
A.K. Sharma ◽  
J. Narayan

AbstractEpitaxial Cu/TiN heterostructures were grown on hexagonal (6H)-SiC(0001) substrate by pulsed laser deposition using the domain epitaxy, where integral multiple of lattice constant or major planes match across the interface1. Such layers are needed for metallization of SiC bond integrated circuit devices. These Cu and TiN layers on SiC(0001) were grown at 600 degrees centigrade in a high vacuum (<10−6 Torr). This structure was characterized using X-ray diffraction technique and transmission electron microscopy. The X-ray diffraction recorded only (111) and (222) reflection of Cu and TiN. The full-width at half maximum of ω-rocking curve of (111) reflection of Cu (0.4 degree) and TEM results indicated a high epitaxial quality. The plan view transmission electron micrograph shows that Cu forms three-dimensional islands indicating that the Cu/TiN interface energy is very high. The island size varies from 0.2 to 2 μm. Analysis of selective aperture diffraction patterns and cross-sectional transmission electron microscopy, including high-resolution imaging, showed relationships Cu(111)//TiN(111)//6H-SiC(0001). The TiN/SiC an interface was locally atomically sharp and free from secondary phases or obvious interdiffusion. The typical defects in the TiN(111) layers consisted of threading domain boundaries. The mechanism of three-dimension growth of copper on TiN layers was discussed.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


1995 ◽  
Vol 401 ◽  
Author(s):  
S. Madhavan ◽  
B. J. Gibbons ◽  
A. Dabkowski ◽  
H. A. Dabkowska ◽  
S. Trolier-Mckinstry ◽  
...  

AbstractEpitaxial films of Sr2RuO4 have been grown in situ by pulsed laser deposition on (100) LaAlO3 and (100) LaSrGaO4 substrates. X-ray diffraction results show that the films are single domain and grow c-axis oriented on (100) LaAlO3 and a-axis oriented on (100) LaSrGaO4 substrates. X-ray ø-scans indicate epitaxial alignment of the film and substrate in-plane axes in both cases. Resistivity versus temperature measurements reveal that the as-grown c-axis oriented films are semiconducting and the a-axis oriented films are metallic. The metallic films grown so far were found to be non-superconducting down to 50 mK.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


2011 ◽  
Vol 47 (4) ◽  
pp. 415-422 ◽  
Author(s):  
G. Balakrishnan ◽  
P. Kuppusami ◽  
S. Murugesan ◽  
E. Mohandas ◽  
D. Sastikumar

2016 ◽  
Vol vol1 (1) ◽  
Author(s):  
Billal Allouche ◽  
Yaovi Gagou ◽  
M. El Marssi

By pulsed laser deposition, lead potassium niobate Pb2KNb5O15 was grown on (001) oriented Gd3Ga5O12 substrate using a platinum buffer layer. The PKN thin films were characterized by X-Ray diffraction and Scanning Electron Microscopy (SEM). The dependence of their structural properties as a function of the deposition parameters was studied. It has been found that the out of plane orientation of PKN film depends on the oxygen pressure used during the growth. Indeed, PKN thin film is oriented [001] for low pressure and is oriented [530] for high pressure. For these two orientations, the crystalline quality of PKN film was determined using omega scans.


Sign in / Sign up

Export Citation Format

Share Document