AFM Studies of Fracture Surfaces of Composition B Energetic Materials

2001 ◽  
Vol 705 ◽  
Author(s):  
Y. D. Lanzerotti ◽  
J. Sharma

AbstractThe characteristics of TNT (trinitrotoluene) crystals in Composition B have been studied using atomic force microscopy (AFM). The size of TNT crystals has been examined by analyzing the surface structure that is exhibited after mechanical failure of the Composition B. The mechanical failure occurs when the material is subjected to high acceleration (high g)inan ultracentrifuge and. the shear or tensile strength is exceeded. AFM examination of the topography of the Composition B fracture surface reveals fracture across columnar grains of the TNT. The width of the columnar TNT grains ranges in size from ~ 1 μm to~2 μm. Their height ranges in size from ~ 50 nm to ~ 300 nm.

2003 ◽  
Vol 800 ◽  
Author(s):  
Y. D. Lanzerotti ◽  
J. Sharma ◽  
R. W. Armstrong ◽  
R. L. McKenney ◽  
T. R. Krawietz

ABSTRACTThe characteristics of TNT (trinitrotoluene) crystals in the fracture surface of Composition B (a melt-cast mixture of TNT and RDX) have been studied using atomic force microscopy (AFM). The size of TNT crystals has been examined by analyzing the surface structure that is exhibited after mechanical failure of the Composition B. The failure occurs when the material is subjected to high acceleration in an ultracentrifuge and the shear or tensile strength is exceeded. AFM examination of the topography of the Composition B fracture surface reveals fracture across columnar grains of the TNT. The width of the columnar TNT grains ranges in size from ∼ 1 μm to ∼ 2 μm. Their height ranges in size from ∼ 50 nm to ∼ 300 nm. Flat TNT columns alternate with TNT columns containing river patterns that identify the direction of crack growth. Steps in the river patterns are a few nanometers in depth. The TNT constitutent fracture surface morphology is shown to occur on such fine scale, beginning from adjacent columnar crystals only 1–2 μm in width, and including river marking step heights of only a few nanometers, that AFM-type resolution is required.


1992 ◽  
Vol 274 (2) ◽  
pp. L524-L528 ◽  
Author(s):  
Norihito Ikemiya ◽  
Shigeta Hara ◽  
Kazumi Ogino ◽  
Tsuyoshi Nakajima

1992 ◽  
Vol 46 (1) ◽  
pp. 167-178 ◽  
Author(s):  
A. K. Fritzsche ◽  
A. R. Arevalo ◽  
M. D. Moore ◽  
C. J. Weber ◽  
V. B. Elings ◽  
...  

1992 ◽  
Vol 42-44 ◽  
pp. 1141-1147 ◽  
Author(s):  
W. Stocker ◽  
B. Bickmann ◽  
S.N. Magonov ◽  
H.-J. Cantow ◽  
B. Lotz ◽  
...  

Author(s):  
Е.В. Фомин ◽  
А.Д. Бондарев ◽  
A.I. Rumyantseva ◽  
T. Maurer ◽  
Н.А. Пихтин ◽  
...  

AbstractA study of the surface topography and optical characteristics of thin AlN films used as passivating and antireflection coatings deposited on n -GaAs (100) substrates by reactive ion-plasma sputtering is reported. It was found that the process conditions affect the structure and the optical characteristics of the films, which makes it possible to obtain coatings with prescribed parameters. An analysis of the results furnished by ellipsometry and atomic-force microscopy of the surface shows that the refractive index of the films is correlated with the surface structure.


2018 ◽  
Vol 452 ◽  
pp. 67-74 ◽  
Author(s):  
Shiqiang Huang ◽  
Ling-Zhi Cheong ◽  
Shuwei Wang ◽  
Deyu Wang ◽  
Cai Shen

2016 ◽  
Vol 258 ◽  
pp. 358-361 ◽  
Author(s):  
Yuliya V. Chudinova ◽  
Denis V. Kurek ◽  
Valery P. Varlamov

Natural biodegradable and biocompatible polysaccharides chitosan, pectin, carrageenan and heparin were used to form thin nanostructured films. In this study using atomic force microscopy (AFM) and force spectroscopy the special characteristics of formation and structure of thin coatings were investigated, three models of the polymers interaction were proposed. Different mechanisms of polymers influence on each other in the bilayers formation were shown, coatings with different surface structure and mechanical properties were formed. The obtained data can be used for the preparation of nanostructured coatings with desired surface parameters.


1993 ◽  
Vol 291 (3) ◽  
pp. L759-L762 ◽  
Author(s):  
Norihito Ikemiya ◽  
Yutaka Okazaki ◽  
Shigeta Hara ◽  
Tsuyoshi Nakajima

Sign in / Sign up

Export Citation Format

Share Document