scholarly journals Dopant and Self-Diffusion in Extrinsic n-Type Silicon Isotopically Controlled Heterostructures

2002 ◽  
Vol 719 ◽  
Author(s):  
Hughes H. Silvestri ◽  
Ian D. Sharp ◽  
Hartmut A. Bracht ◽  
Sam P. Nicols ◽  
Jeff W. Beeman ◽  
...  

AbstractWe present experimental results of dopant- and self-diffusion in extrinsic silicon doped with As. Multilayers of isotopically controlled 28Si and natural silicon enable simultaneous analysis of 30Si diffusion into the 28Si enriched layers and dopant diffusion throughout the multilayer structure. In order to suppress transient enhanced self- and dopant diffusion caused by ion implantation, we adopted a special approach to dopant introduction. First, an amorphous 250-nm thick Si layer was deposited on top of the Si isotope heterostructure. Then the dopant ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer. These samples were annealed for various times and temperatures to study the impact of As diffusion and doping on Si self-diffusion. The Si self-diffusion coefficient and the dopant diffusivity for various extrinsic n-type conditions were determined over a wide temperature range. We observed increased diffusivities that we attribute to the increase in the concentration of the native defect promoting the diffusion.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4030
Author(s):  
Gengbiao Chen ◽  
Zhiwen Liu

The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–Kubo method, so as to analyze the change rule between the modification degree of nanochannels and the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water increased with the length of the modified chain. The average diffusion coefficient of fluid water in the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were 44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four wall characteristic models, the diffusion coefficients in the z direction were smaller than those in the other directions. However, with an increase in the silylation degree, the increased self-diffusion coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the wall, the Dz was smaller than Dxy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parisa Jahanbakhsh Bonab ◽  
Alireza Rastkar Ebrahimzadeh ◽  
Jaber Jahanbin Sardroodi

AbstractDeep eutectic solvents (DESs) have received much attention in modern green chemistry as inexpensive and easy to handle analogous ionic liquids. This work employed molecular dynamics techniques to investigate the structure and dynamics of a DES system composed of choline chloride and phenyl propionic acid as a hydrogen bond donor and acceptor, respectively. Dynamical parameters such as mean square displacement, liquid phase self-diffusion coefficient and viscosity are calculated at the pressure of 0.1 MPa and temperatures 293, 321 and 400 K. The system size effect on the self-diffusion coefficient of DES species was also examined. Structural parameters such as liquid phase densities, hydrogen bonds, molecular dipole moment of species, and radial and spatial distribution functions (RDF and SDF) were investigated. The viscosity of the studied system was compared with the experimental values recently reported in the literature. A good agreement was observed between simulated and experimental values. The electrostatic and van der Waals nonbonding interaction energies between species were also evaluated and interpreted in terms of temperature. These investigations could play a vital role in the future development of these designer solvents.


1979 ◽  
Vol 87 (2-3) ◽  
pp. 341-344 ◽  
Author(s):  
Y. Oishi ◽  
Y. Kamei ◽  
M. Akiyama ◽  
T. Yanagi

1987 ◽  
Vol 20 (5) ◽  
pp. 1133-1141 ◽  
Author(s):  
D. S. Pearson ◽  
G. Ver Strate ◽  
E. Von Meerwall ◽  
F. C. Schilling

2002 ◽  
Vol 719 ◽  
Author(s):  
Ian D. Sharp ◽  
Hartmut A. Bracht ◽  
Hughes H. Silvestri ◽  
Samuel P. Nicols ◽  
Jeffrey W. Beeman ◽  
...  

AbstractIsotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. 30Si was used as a tracer through a multilayer structure of alternating natural Si and enriched 28Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850°C and 1100°C. A specially designed ion-implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.


1981 ◽  
Vol 10 ◽  
Author(s):  
A. P. Botha ◽  
R. Pretorius

Radioactive 31Si (half-life, 2.62 h) was used as a marker to study Co2Si, CrSi2, TiSi2 and ZrSi2 formation. By marking the initial layer of silicide with radioactive silicon atoms and by measuring the activity profile in the silicide layer after further silicide formation, the dominant diffusing species and its mechanism of diffusion during the formation of these silicides could be determined. For Co2Si it was found that cobalt is the diffusing species, while disilicide formation was found to take place by silicon substitutional (vacancy) diffusion, with a high self-diffusion coefficient.


Sign in / Sign up

Export Citation Format

Share Document