Studies on Epitaxial Relationship and Interface Structure of AlN/Si(111) and GaN/Si(111) Heterostructures

2002 ◽  
Vol 743 ◽  
Author(s):  
T. A. Rawdanowicz ◽  
H. Wang ◽  
A. Kvit ◽  
J. Narayan

ABSTRACTWe present the details of epitaxial growth interface structure of single wurtzite AlN thin films on (111) Si substrates by laser-molecular-beam-epitaxy. High quality AlN thin films with atomically sharp interfaces can be obtained by Laser-MBE at a substrate temperature of 650 ±10°C. X-ray diffraction and high resolution transmission electron microscopy was used to study the details of epitaxial growth of AlN on Si(111) substrate. The orientation-relationship of AlN on Si(111) was studied from Si <110> and <112> zone axis and determined to be AlN [2110]|Si[110] and AlN [0110]|Si[211]. The atomic structure of the interface was studied by high-resolution transmission electron microscopy and Fourier filtered image of cross-sectional AlN/Si(111) samples from both Si<110> and <112> zone axis. The results revealed the domain matching epitaxy of 4:5 ratio between the interplanar distances of Si(110) and AlN [2110]. We also present similarities and differences between the growth mechanism of AlN/Si(111) and GaN/Si(111) heterostructures.

2006 ◽  
Vol 966 ◽  
Author(s):  
Chun Wang ◽  
Mark H Kryder

ABSTRACTEpitaxial SrTiO3 (001) thin films with a TiN template layer have been deposited on Si(001) single crystal substrates by RF sputtering. The deposited SrTiO3 films show a surface with roughness of 0.66nm. The orientation relationship was determined to be SrTiO3(001)[110]∥TiN(001)[110]∥Si(001)[110]. The microstructure and interface of the multilayer was studied using high resolution transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer.


Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.


2016 ◽  
Vol 858 ◽  
pp. 225-228 ◽  
Author(s):  
Ren Wei Zhou ◽  
Xue Chao Liu ◽  
Hui Jun Guo ◽  
H.K. Kong ◽  
Er Wei Shi

Triangle-shaped defects are one of the most common surface defects on epitaxial growth of 4H-SiC epilayer on nearly on-axis SiC substrate. In this paper, we investigate the feature and structure of such defects using Nomarski optical microscopy (NOM), micro-Raman spectroscopy and high resolution transmission electron microscopy (HR-TEM). It is found that triangle-shaped defects were composed of a thick 3C-SiC polytype, as well as 4H-SiC epilayer.


2009 ◽  
Vol 65 (6) ◽  
pp. 694-698 ◽  
Author(s):  
Y. Han ◽  
I. M. Reaney ◽  
D. S. Tinberg ◽  
S. Trolier-McKinstry

SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the 〈100〉p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a − a − c + Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in 〈110〉p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections.


Sign in / Sign up

Export Citation Format

Share Document