Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Indium Compositions

2003 ◽  
Vol 764 ◽  
Author(s):  
Chang-Soo Kim ◽  
Sam-Kyu Noh ◽  
Kyuhan Lee ◽  
Sunwoon Kim ◽  
Jay P. Song

AbstractThe structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) grown on sapphire by MOCVD have been investigated using high-resolution XRD, PL and TEM. The samples consisted of 10 periods of InGaN wells with 6.5nm thickness. The designed indium compositions were 15, 20, 25 and 30% (samples C15, C20, C25, C30, respectively). The thickness of GaN barrier was 7.5nm. The MQW in sample C15 maintained lattice coherency with the GaN epilayer underneath, the MQWs in the other samples, however, experienced lattice relaxation. The crystallinity of the samples decreased considerably with In concentration. As In composition increased, PL peak energy showed a red-shift, and the FWHM of the peaks increased. The increase in the FWHM is attributed to the defects due to the lattice relaxation. For C25 the PL peak intensity increased sharply in spite of the defects due to the lattice relaxation of the sample. It is concluded that the results are related to the In-rich region due to indium phase separation which was observed by TEM image.

2002 ◽  
Vol 722 ◽  
Author(s):  
Young-Hoon KIM ◽  
Chang-Soo KIM ◽  
Sam-Kyu NOH ◽  
Jae-Young LEEM ◽  
Kee-Young LIM ◽  
...  

AbstractThe structural and the optical properties of 10-period In0.15Ga0.85N/GaN multiple quantum wells (MQWs) have been investigated using HRXRD (high-resolution X-ray diffraction) and PL (photoluminescence). For the samples, the barrier thickness was kept constant, 7.5 nm and the well thicknesses were varied, 1.5, 3.0, 4.5, and 6.0 nm. For the structural characterization, an ω/2θ-scan and an ω-scan for GaN (00 2) reflection and a reciprocal space mapping (RSM) around the GaN (10 5) lattice point were employed. The average strain for the MQWs increased as the well thickness increased. The MQW with a 6.0 nm well thickness experienced lattice relaxation and the crystallinity of the sample was poor compared to that of the other samples. MQWs with well thicknesses of 1.5, 3.0 and 4.5 nm, however, maintained lattice coherency with the GaN epilayers underneath, and the critical well thickness for lattice relaxation of the MQWs used in the study was 6.0 nm. The PL spectra showed that the relative emission intensity of the sample with a 6.0 nm well thickness was lower than for the others, a fact consistent with the X-ray results. The emission intensity, therefore, is considered to be affected by defects due to lattice relaxation of the epilayer.


2021 ◽  
Vol 11 (18) ◽  
pp. 8639
Author(s):  
Zhiwei Li ◽  
Yugang Zeng ◽  
Yue Song ◽  
Jianwei Zhang ◽  
Yinli Zhou ◽  
...  

InGaAs quantum well (QW) lasers have attracted significant attention owing to their considerable potential for applications in optical communications; however, the relationship between the misorientation of the substrates used to grow InGaAs QWs and the structural and optical properties of QWs is still ambiguous. In this study, In-rich InGaAs/GaAsP single QWs were grown in the same run via metal organic chemical vapor deposition on GaAs (001) substrates misoriented by 0°, 2°, and 15° toward (111). The effects of substrate misorientation on the crystal quality and structural properties of InGaAs/GaAsP were investigated by X-ray diffraction and Raman spectroscopy. The 0° substrate exhibited the least lattice relaxation, and with increasing misorientation, the degree of lattice relaxation increased. The optical properties of the InGaAs/GaAsP QWs were investigated using temperature-dependent photoluminescence. An abnormal S-shaped variation of the peak energy and inverse evolution of the spectral bandwidth were observed at low temperatures for the 2° substrate, caused by the localization potentials due to the In-rich clusters. Surface morphology observations revealed that the growth mode varied with different miscuts. Based on the experimental results obtained in this study, a mechanism elucidating the effect of substrate miscuts on the structural and optical properties of QWs was proposed and verified.


2000 ◽  
Vol 221 (1-4) ◽  
pp. 368-372 ◽  
Author(s):  
Dong-Joon Kim ◽  
Yong-Tae Moon ◽  
Keun-Man Song ◽  
Chel-Jong Choi ◽  
Young-Woo Ok ◽  
...  

2000 ◽  
Vol 5 (S1) ◽  
pp. 977-983
Author(s):  
Yong-Hwan Kwon ◽  
G. H. Gainer ◽  
S. Bidnyk ◽  
Y. H. Cho ◽  
J. J. Song ◽  
...  

The effect of In on the structural and optical properties of InxGa1−xN/GaN multiple quantum wells (MQWs) was investigated. These were five-period MQWs grown on sapphire by metalorganic chemical vapor deposition. Increasing the In composition caused broadening of the high-resolution x-ray diffraction superlattice satellite peak and the photoluminescence-excitation bandedge. This indicates that the higher In content degrades the interface quality because of nonuniform In incorporation into the GaN layer. However, the samples with higher In compositions have lower room temperature (RT) stimulated (SE) threshold densities and lower nonradiative recombination rates. The lower RT SE threshold densities of the higher In samples show that the suppression of nonradiative recombination by In overcomes the drawback of greater interface imperfection.


2005 ◽  
Vol 278 (1-4) ◽  
pp. 397-401 ◽  
Author(s):  
X.Y. Liu ◽  
J.F. Fälth ◽  
T.G. Andersson ◽  
P. Holmström ◽  
P. Jänes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document