Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Well Widths

2002 ◽  
Vol 722 ◽  
Author(s):  
Young-Hoon KIM ◽  
Chang-Soo KIM ◽  
Sam-Kyu NOH ◽  
Jae-Young LEEM ◽  
Kee-Young LIM ◽  
...  

AbstractThe structural and the optical properties of 10-period In0.15Ga0.85N/GaN multiple quantum wells (MQWs) have been investigated using HRXRD (high-resolution X-ray diffraction) and PL (photoluminescence). For the samples, the barrier thickness was kept constant, 7.5 nm and the well thicknesses were varied, 1.5, 3.0, 4.5, and 6.0 nm. For the structural characterization, an ω/2θ-scan and an ω-scan for GaN (00 2) reflection and a reciprocal space mapping (RSM) around the GaN (10 5) lattice point were employed. The average strain for the MQWs increased as the well thickness increased. The MQW with a 6.0 nm well thickness experienced lattice relaxation and the crystallinity of the sample was poor compared to that of the other samples. MQWs with well thicknesses of 1.5, 3.0 and 4.5 nm, however, maintained lattice coherency with the GaN epilayers underneath, and the critical well thickness for lattice relaxation of the MQWs used in the study was 6.0 nm. The PL spectra showed that the relative emission intensity of the sample with a 6.0 nm well thickness was lower than for the others, a fact consistent with the X-ray results. The emission intensity, therefore, is considered to be affected by defects due to lattice relaxation of the epilayer.

2003 ◽  
Vol 764 ◽  
Author(s):  
Chang-Soo Kim ◽  
Sam-Kyu Noh ◽  
Kyuhan Lee ◽  
Sunwoon Kim ◽  
Jay P. Song

AbstractThe structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) grown on sapphire by MOCVD have been investigated using high-resolution XRD, PL and TEM. The samples consisted of 10 periods of InGaN wells with 6.5nm thickness. The designed indium compositions were 15, 20, 25 and 30% (samples C15, C20, C25, C30, respectively). The thickness of GaN barrier was 7.5nm. The MQW in sample C15 maintained lattice coherency with the GaN epilayer underneath, the MQWs in the other samples, however, experienced lattice relaxation. The crystallinity of the samples decreased considerably with In concentration. As In composition increased, PL peak energy showed a red-shift, and the FWHM of the peaks increased. The increase in the FWHM is attributed to the defects due to the lattice relaxation. For C25 the PL peak intensity increased sharply in spite of the defects due to the lattice relaxation of the sample. It is concluded that the results are related to the In-rich region due to indium phase separation which was observed by TEM image.


1987 ◽  
Vol 103 ◽  
Author(s):  
Jichai Jeong ◽  
J. C. Lee ◽  
M. A. Shahid ◽  
T. E. Schlesinger ◽  
A. G. Milnes

ABSTRACTX-ray diffraction, transmission electron microscopy (TEM), and photoluminescence measurements have been made on strained InxGa1-xAs/GaAs quantum well structures. The well widths measured from TEM are 187, 115 and 69 Å for an interrupted growth, and 218, 126, 60 Å for a non-interrupted growth. In the measured x-ray diffraction patterns, the Pendellosung fringes due to GaAs barriers are modulated by a broad weak peak mostly coming from the thickest InxGa1-xAs well layer and is fairly symmetric for the noninterrupted sample. For the interrupted quantum well, the x-ray diffraction pattern is less symmetric, since there is further modulation by another broader and weaker peak. This results show that the In content in the InxGa1-xAs well layers are not well controlled for the interrupted quantum well. Using actual thickness measured from TEM, x-ray diffraction patterns are calculated and good agreement is obtained between the measured and the calculated x-ray diffraction patterns. The three strained InxGa1-xAs/Gaks quantum wells grown without interruption produce high intensity and narrow full-width at half-maximum (FWHIM) of 2.9 meV of the photoluminescence peak. The photoluminescence peaks for the interrupted quantum well are relatively broad and asymmetric, and have lower intensities, indicating that better quality InxGa1-xAs/GaAs quantum wells can be grown without interruption.


2000 ◽  
Vol 639 ◽  
Author(s):  
D.J. As ◽  
T. Frey ◽  
M. Bartels ◽  
A. Khartchenko ◽  
D. Schikora ◽  
...  

ABSTRACTCubic AlyGa1−yN/GaN heterostructures on GaAs(001) substrates were grown by radio-frequency plasma-assisted molecular beam epitaxy. High resolution X-ray diffraction, spectroscopic ellipsometry and cathodoluminescence were used to characterize the structural and optical properties of the alloy epilayers. X-ray diffraction reciprocal space maps demonstrate the good crystal quality of the cubic AlyGa1−yN films. Both SE as well as room temperature CL of the AlyGa1−yN epilayer show a linear increase of the band gap with increasing Al-content. A pseudomorphically strained cubic 10 × (2.4 nm GaN/ 4.8 nm Al0.12Ga0.88N) multi-quantum well (MQW) structure has been realized. Cathodoluminescence clearly demonstrates strong radiative recombination due to quantized states in the GaN well layer at a photon energy of 3.323 eV.


1992 ◽  
Vol 263 ◽  
Author(s):  
D.W. Greve ◽  
R. Misra ◽  
M.A. Capano ◽  
T.E. Schlesinger

ABSTRACTWe report on the growth and characterization of multiple quantum well structures by UHV/ CVD epitaxy. X- ray diffraction is used to verify the expected layer periodicity and to determine the quantum well thickness. Photoluminescence measurements show peaks which we associate with recombination of excitons in the quantum wells. The measurements are consistent with high quality layers with small variation in quantum well thickness across a wafer.


2001 ◽  
Vol 08 (05) ◽  
pp. 537-540
Author(s):  
D. H. ZHANG

The effects of Be doping in the wells of the p-type pseudomorphic InGaAs/AlGaAs multiple quantum wells were characterized using photoluminescence and X-ray diffraction techniques. It is found that high doping in the wells causes shift of energy levels and deteriorates the well–barrier interfaces of the quantum well structures. The shift of the energy levels is mainly due to the band gap shrinkage while the interface roughness can be explained by interstitial doping.


2014 ◽  
Vol 1736 ◽  
Author(s):  
D.J. As ◽  
R. Kemper ◽  
C. Mietze ◽  
T. Wecker ◽  
J.K.N. Lindner ◽  
...  

ABSTRACTIn this contribution we report on the optical properties of cubic AlN/GaN asymmetric multi quantum wells (MQW) structures on 3C-SiC/Si (001) substrates grown by radio-frequency plasma-assisted molecular beam epitaxy (MBE). Scanning transmission electron microscopy (STEM) and spatially resolved cathodoluminescence (CL) at room temperature and at low temperature are used to characterize the optical properties of the cubic AlN/GaN MQW structures. An increasing CL emission intensity with increasing film thickness due to the improved crystal quality was observed. This correlation can be directly connected to the reduction of the linewidth of x-ray rocking curves with increasing film thickness of the c-GaN films. Defects like stacking faults (SFs) on the {111} planes, which also can be considered as hexagonal inclusions in the cubic crystal matrix, lead to a decrease of the CL emission intensity. With low temperature CL line scans also monolayer fluctuations of the QWs have been detected and the observed transition energies agree well with solutions calculated using a one-dimensional (1D) Schrödinger-Poisson simulator.


2000 ◽  
Vol 5 (S1) ◽  
pp. 977-983
Author(s):  
Yong-Hwan Kwon ◽  
G. H. Gainer ◽  
S. Bidnyk ◽  
Y. H. Cho ◽  
J. J. Song ◽  
...  

The effect of In on the structural and optical properties of InxGa1−xN/GaN multiple quantum wells (MQWs) was investigated. These were five-period MQWs grown on sapphire by metalorganic chemical vapor deposition. Increasing the In composition caused broadening of the high-resolution x-ray diffraction superlattice satellite peak and the photoluminescence-excitation bandedge. This indicates that the higher In content degrades the interface quality because of nonuniform In incorporation into the GaN layer. However, the samples with higher In compositions have lower room temperature (RT) stimulated (SE) threshold densities and lower nonradiative recombination rates. The lower RT SE threshold densities of the higher In samples show that the suppression of nonradiative recombination by In overcomes the drawback of greater interface imperfection.


Sign in / Sign up

Export Citation Format

Share Document