Molecular-Dynamics Modelling of the Tensile Deformation of Helical Nanowires

2003 ◽  
Vol 778 ◽  
Author(s):  
K. Shintani ◽  
S. Kameoka

AbstractDeformations of Au nanowires of helical structures under enforced elongation are addressed by the molecular-dynamics simulation. The embedded-atom method potential is employed for calculating the interaction between Au atoms. Model nanowires of the two kinds of helicities are prepared. Before elongation, a model nanowire is equilibrated at a specified temperature. Then, the Au atoms at one end of the nanowire are translationally moved in the axial direction. The simulation results show that a model nanowire can be elongated to form a single-atom chain of Au atoms under some circumstances.

2004 ◽  
Vol 818 ◽  
Author(s):  
S. Kameoka ◽  
K. Shintani

AbstractThe deformation of Au nanowires of helical multi-shell (HMS) structures and the fcc structure under a tensile external force is addressed by molecular-dynamics simulation. The modified embedded-atom method (MEAM) potential is employed for calculating the interaction between Au atoms. At first, a model nanowire is equilibrated at a specified temperature. Next, the external force in the axial direction is imposed on the Au atoms at the ends of the nanowire. We conclude that the Young modulus of a Au nanowire depends on its atomic structure.


1998 ◽  
Vol 554 ◽  
Author(s):  
Y. Kogure ◽  
M. Doyama

AbstractMolecular dynamics simulation of the metallic glasses has been done. The embedded atom method potential function for copper is used to express the atomic interaction. The stress distribution in the glassy state is evaluated from specific volume occupied by single atom and local density in divided cells. The displacements of individual atom under the shear stress are calculated and the correlation between the displacements and the atomic volumes are investigated.


2012 ◽  
Vol 184 ◽  
pp. 301-306 ◽  
Author(s):  
Yoshiaki Kogure ◽  
T. Kosugi ◽  
T. Nozaki

Morphology and mechanical resonse of copper nanoparticles with defects have been simulated by means of molecular dynamics simulation. The embedded atom method potential for copper was used to express the interaction of atoms. Four types of model samples were prepared and about 37,000 atoms were contained in each sample. Two of them are cubic shape with {100} surfaces, in which vacancies or interstitials are introduced. The other two samples are once melted and solidified particles with nearly spherical surfaces. The atomic structure is controlled by cooling rate, and crystalline and amorphous structures are realized. Shear and tetragonal strains are applied to the samples and stress-strain relations for the samples are derived. Mechanical damping and internal friction were evaluated from the free decaying oscillations by releasing static strains.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1532
Author(s):  
Dmitri V. Louzguine-Luzgin ◽  
Andrey I. Bazlov

The atomic structure variations on cooling, vitrification and crystallization processes in liquid metals face centered cubic (FCC) Cu are simulated in the present work in comparison with body centered cubic (BCC) Fe. The process is done on continuous cooling and isothermal annealing using a classical molecular-dynamics computer simulation procedure with an embedded-atom method potential at constant pressure. The structural changes are monitored with direct structure observation in the simulation cells containing from about 100 k to 1 M atoms. The crystallization process is analyzed under isothermal conditions by monitoring density and energy variation as a function of time. A common-neighbor cluster analysis is performed. The results of thermodynamic calculations on estimating the energy barrier for crystal nucleation and a critical nucleus size are compared with those obtained from simulation. The differences in crystallization of an FCC and a BCC metal are discussed.


2002 ◽  
Vol 749 ◽  
Author(s):  
K. Shintani ◽  
T. Nakajima ◽  
Y. Taniguchi

ABSTRACTThe initial periods of deposition process of metal clusters in the soft-landing regime are investigated by the molecular-dynamics simulation. The embedded-atom method potential is adopted for calculation of the interaction between metallic atoms. The predictor-corrector method for second-order differential equations is employed for integration of the equations of motion. A simulation begins with equilibration of clusters and a substrate at a specified temperature. The lowest atomic layer in the substrate is fixed and the next few atomic layers are set to be velocity-scaling layers during the deposition process. The periodic boundary conditions are imposed in the horizontal directions. A single cluster with no velocity is deposited on the substrate. The simulations are performed at different temperatures of the clusters and substrate and for different sizes of clusters. How the morphological transition of the deposited nanostructures is affected by these parameters is discussed.


2017 ◽  
Vol 95 (12) ◽  
pp. 1189-1193
Author(s):  
Muhammad Imran ◽  
Fayyaz Hussain ◽  
Saba Altaf ◽  
Abdul Rehman ◽  
M. Arshad Javid ◽  
...  

In the present study, a molecular dynamics simulation employing embedded atom method potential is performed to investigate the formation and characterization of CuZr bulk metallic glasses (BMGs). To elucidate the effect of component concentration of three samples of BMGs including Cu25Zr75, Cu50Zr50, and Cu75Zr25 that are formed by melt quenching. The local structure of BMGs is analyzed by means of radial distribution function and local atomic number density, ρ. The mechanical behavior of three compositions is investigated using uniaxial compressive loading at a constant strain rate. It is revealed from the results that yield strength increases with increasing Cu concentration. Thermal expansion of CuZr BMGs is examined and variation in length and volume is measured. The analysis revealed that Cu25Zr75, and Cu50Zr50 exhibited the typical expansion behavior while Cu75Zr25 showed an anomalous behavior.


1996 ◽  
Vol 439 ◽  
Author(s):  
E. Alonso ◽  
M. J. Caturla ◽  
M. Tang ◽  
H. Huang ◽  
T. Diaz de ia Rubia

AbstractHigh-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. We provide evidence that correlation between interstitial and vacancy clustering exists.


2006 ◽  
Vol 978 ◽  
Author(s):  
Yoshiaki Kogure ◽  
Kei Sakieda ◽  
Toshio Kosugi ◽  
Tadatoshi Nozaki

Abstract Motion of edge dislocation in copper crystals is investigated by means of molecular dynamics simulation. The embedded atom method potential was used in the simulation. Configuration and motion of dislocations are graphically demonstrated in 3-dimentional model. Change of mean potential energy during the dislocation motion is also investigated.


2011 ◽  
Vol 378-379 ◽  
pp. 7-10
Author(s):  
Gui Xue Bian ◽  
Yue Liang Chen ◽  
Jian Jun Hu ◽  
Li Xu

Molecular dynamics simulation was used to simulate the tension process of purity and containing impurity metal aluminum. Elastic constants of purity and containing impurity metal aluminum were calculated, and the effects of impurity on the elastic constants were also studied. The results show that O-Al bond and Al-Al bond near oxygen atoms could be the sites of crack nucleation or growth under tensile load, the method can be extended to research mechanical properties of other metals and alloys structures.


Sign in / Sign up

Export Citation Format

Share Document