Ti-site Substitution Using the Higher-valent Cation for Enhancing the Ferroelectric Properties of Nd3+−substituted Bismuth Titanate Thin Films

2003 ◽  
Vol 784 ◽  
Author(s):  
Hiroshi Uchida ◽  
Seiichiro Koda ◽  
Hirofumi Matsuda ◽  
Takashi Iijima ◽  
Takayuki Watanabe ◽  
...  

ABSTRACTTi-site substitution using the higher-valent cation was performed on ferroelectric thin films of neodymium-substituted bismuth titanate, (Bi,Nd)4Ti3O12(BNT), in order to improve its ferroelectric properties by compensating the space charge in BIT-based crystal. Ti-site-substituted BNT films, (Bi3.50Nd0.50)1-(x/12)(Ti3.00-xVx)O15(x= 0 ∼ 0.09), were fabricated on (111)Pt/Ti/ SiO2/(100)Si substrates using a chemical solution deposition (CSD) technique. V5+-substitution enhanced the remanent polarization of BNT film without change in the coercive field. V5+-substitution also exhibited the possibilities for improving the endurance against leakage current and fatigue degradation.

2001 ◽  
Vol 688 ◽  
Author(s):  
H. Uchida ◽  
H. Yoshikawa ◽  
I. Okada ◽  
H. Matsuda ◽  
T. Iijima ◽  
...  

AbstractBismuth titanate (Bi4Ti3O12; BIT) -based ferroelectric materials are proposed from the view of the “Site-engineering”, where the Bi-site ions are substituted by lanthanoid ions (La3+ and Nd3+) and Ti-site ions by other ions with higher charge valence (V5+). In the present study, influences of vanadium (V) - substitution for (Bi,M)4Ti3O12 thin films [M = lanthanoid] on the ferroelectric properties are evaluated. V-substituted (Bi,M)4Ti3O12 films have been fabricated using a chemical solution deposition (CSD) technique on the (111)Pt/Ti/SiO2/(100)Si substrate. Remnant polarization of (Bi,La)4Ti3O12 and (Bi,Nd)4Ti3O12 films has been improved by the V-substitution independent of the coercive field. The processing temperature of BLT and BNT films could also be lowered by the V-substitution.


2021 ◽  
Vol 21 (4) ◽  
pp. 2681-2686
Author(s):  
Nguyen Ngoc Minh ◽  
Bui Van Dan ◽  
Nguyen Duc Minh ◽  
Guus Rijnders ◽  
Ngo Duc Quan

Lead-free Bi0.5K0.5TiO3 (BKT) ferroelectric films were synthesized on Pt/Ti/SiO2/Si substrates via the chemical solution deposition. The influence of the excess potassium on the microstructures and the ferroelectric properties of the films was investigated in detail. The results showed that the BKT films have reached the well-crystallized state in the single-phase perovskite structure with 20 mol.% excess amount of potassium. For this film, the ferroelectric properties of the films were significantly enhanced. The remnant polarization (Pr) and maximum polarization (Pm) reached the highest values of 9.4 μC/cm2 and 32.2 μC/cm2, respectively, under the electric field of 400 kV/cm.


2020 ◽  
Vol 117 (21) ◽  
pp. 212904
Author(s):  
Shuaizhi Zheng ◽  
Zidong Zhao ◽  
Zhaotong Liu ◽  
Binjian Zeng ◽  
Lu Yin ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 91-94
Author(s):  
S. Chen ◽  
A.H. Cai ◽  
X.A. Mei ◽  
Chong Qing Huang ◽  
W.K. An ◽  
...  

Sm-doped bismuth titanate and random oriented Bi4-xCexTi3O12 (BCT) thin films were fabricated on Pt/Ti/SiO2/Si substrates rf magnetron sputtering technique. The structures and the ferroelectric properties of the films were investigated. Ce doping leads to a marked improvement in the remanent polarization (Pr) and the coercive field (Ec). At the applied electric field of 100 kV/cm, Pr and Ec of the BCT (x = 0.8) film annealed at 650 oC are 20.5 μC/cm2 and 60 KV/cm, respectively. However, after 3 × 1010 switching cycles, 20% degradation of 2Pr is observed in the film.


2008 ◽  
Vol 01 (01) ◽  
pp. 19-24 ◽  
Author(s):  
YOSHITAKA NAKAMURA ◽  
SEIJI NAKASHIMA ◽  
DAN RICINSCHI ◽  
MASANORI OKUYAMA

The insertion effect of Bi -excess layers on stoichiometric BiFeO 3 thin films prepared by chemical solution deposition is investigated. A stoichiometric BiFeO 3 thin film with both the Bi -excess top and bottom surface layers shows improved crystallinity with the remanent polarization of 65 μC/cm2 at 80 K, which is larger than for BiFeO 3 film prepared by the same process using stoichiometric solution. These results are attributed to the reduction of the imperfect crystal at the interface between the BiFeO 3 film and electrode. By inserting Bi-excess layers, the saturated magnetization of all the films becomes smaller than that of the film using stoichiometric solution. Bi -excess surface layers at the top and bottom interfaces are an effective way to obtain good ferroelectric properties.


2013 ◽  
Vol 582 ◽  
pp. 59-62 ◽  
Author(s):  
Narimichi Makino ◽  
Bong Yeon Lee ◽  
Makoto Moriya ◽  
Wataru Sakamoto ◽  
Takashi Iijima ◽  
...  

Lead-free ferroelectric (Bi0.5Na0.5)TiO3(BNT) thin films were prepared by chemical solution deposition. BNT and Mn-doped BNT precursor thin films crystallized in the perovskite single phase at 700 °C on Pt/TiOx/SiO2/Si substrates. The leakage current density of the perovskite BNT films, especially in the high applied field region, was reduced by doping with a small amount of Mn. Also, Mn doping markedly improved the ferroelectric properties of the films. 0.5 and 1.0 mol% Mn-doped BNT thin films exhibited well-shaped ferroelectric polarization (P) electric field (E) hysteresis loops at room temperature. Furthermore, the 1 mol% Mn-doped BNT films showed a typical field-induced strain loop, and the effectived33values were estimated to be about 60 pm/V.


1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


Sign in / Sign up

Export Citation Format

Share Document