excess surface
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 92 (2) ◽  
pp. 194
Author(s):  
В.А. Александров

The generation of a directed flow on the water surface in channels with sources and resonators of capillary oscillations is detected and investigated. The surface flow is caused by the movement of the liquid through the gaps between the resonators, as well as between the resonator and the channel walls, under a curved surface that is locally deformed by the sources of capillary vibrations, the transfer of energy of the locally curved surface of the liquid by capillary waves, and the transmission of wave momentum to the particles of the liquid surface in one direction. It is shown that capillary waves together with the energy transfer an excess surface, the flux density of which is equal to the flux of the surface deformation. Moving devices with a capillary-wave accelerator of the surface liquid flow are demonstrated.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7078
Author(s):  
Linhan Du ◽  
Xiaoyu Hu ◽  
Diannan Lu ◽  
Zheng Liu

Ionic transport and ion sieving are important in the field of separation science and engineering. Based on the rapid development of nanomaterials and nano-devices, more and more phenomena occur on the nanoscale devices in the field of thermology, optics, mechanics, etc. Recently, we experimentally observed a novel ion transport phenomenon in nanostructured graphene oxide membrane (GOM) under asymmetric illumination. We first build a light-induced carriers’ diffusion model based on our previous experimental results. This model can reveal the light-induced ion transport mechanism and predict the carriers’ diffusion behavior under different operational situations and material characters. The voltage difference increases with the rise of illuminate asymmetry, photoresponsivity, recombination coefficient, and carriers’ diffusion coefficient ratio. Finally, we discuss the ion transport behavior with different surface charge densities using MD simulation. Moderate surface charge decreases the ion transport with the same type of charge due to the electrostatic repulsion; however, excess surface charge blocks both cation and anion because a thicker electrical double layer decreases effective channel height. Research here provides referenced operational and material conditions to obtain a greater voltage difference between the membrane sides. Also, the mechanism of ion transport and ion sieving can guide us to modify membrane material according to different aims.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 773
Author(s):  
Hitomi Mizutani ◽  
Kazuhiro Tagai ◽  
Shunya Habe ◽  
Yasuharu Takaku ◽  
Tatsuya Uebi ◽  
...  

Self-grooming of the antennae is frequently observed in ants. This antennal maintenance behavior is presumed to be essential for effective chemical communication but, to our knowledge, this has not yet been well studied. When we removed the antenna-cleaning apparatuses of the Japanese carpenter ant (C. japonicus) to limit the self-grooming of the antennae, the worker ants demonstrated the self-grooming gesture as usual, but the antennal surface could not be sufficiently cleaned. By using scanning electron microscopy with NanoSuit, we observed the ants’ antennae for up to 48 h and found that the antennal surfaces gradually became covered with self-secreted surface material. Concurrently, the self-grooming-limited workers gradually lost their behavioral responsiveness to undecane—the alarm pheromone. Indeed, their locomotive response to the alarm pheromone diminished for up to 24 h after the antenna cleaner removal operation. In addition, the self-grooming-limited workers exhibited less frequent aggressive behavior toward non-nestmate workers, and 36 h after the operation, approximately half of the encountered non-nestmate workers were accepted as nestmates. These results suggest that the antennal sensing system is affected by excess surface material; hence, their proper function is prevented until they are cleaned.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Sulaiman Yunus

The threat posed by urban flooding in most cities of the world is becoming alarming especially within the recent decades. This makes it necessary to Identify and delineate flood risk areas within cities in order to curb it menace. This study employs geospatial technique to delineate flood risk areas within Kano metropolis with a view to mitigating its impact on lives and properties. Digital Elevation Model (ASTER DEM 30m) was used to derive excess surface run-off attributes including flow direction and accumulation. Based on these attributes, flood risk areas were determined and delineated using buffer distances of 500 meters. World View image (30 cm spatial resolution) was used to identify the landuses at risk. The result from the analysis delineated flood risk areas at varying exposure levels (i.e high, moderate and low).It was evident that flood risk level within the metropolis corresponds to the pattern of surface run-off flow accumulation areas. Settlements and farmlands found within high accumulation areas along the floodplains of River Jakara (in the North and North-eastern part) and Kano-Zaria road (southern part) are at higher risk than those found on low accumulation areas. The study concluded that excess surface run-off flow direction and accumulation are among the fundamental factors determining the risk to urban flooding. The study recommends that with the ongoing level of urban development and impervious surface expansion, urban planners and policy makers should make use of the flow direction and accumulation maps in determining safer places for future developments


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1661
Author(s):  
José Ángel Aranda ◽  
Carles Beneyto ◽  
Martí Sánchez-Juny ◽  
Ernest Bladé

Excess surface water on roadways due to storm events can cause hazardous scenarios for traffic. The design of efficient road and transportation facility drainage systems is a major challenge. Different approaches to limit excess surface water can be found in the drainage design standards of different countries. This document presents a method based on hydraulic numerical simulation and the assessment of grate inlet efficiency using the Iber model. The method is suitable for application to design criteria according to the regulations of different countries. The presented method facilitates sensitivity analyses of the performance of different scupper dispositions through the total control of the hydraulic behavior of each of the grate inlets considered in each scenario. The detailed hydraulic information can be the basis of different solution comparisons to make better decisions and obtain solutions that maximize efficiency.


2021 ◽  
Vol 4 (4) ◽  
pp. 492-501
Author(s):  
Sulaiman Yunus

The threat posed by urban flooding in most cities of the world is becoming alarming especially within the recent decades. This makes it necessary to Identify and delineate flood risk areas within cities in order to curb it menace. This study employs geospatial technique to delineate flood risk areas within Kano metropolis with a view to mitigating its impact on lives and properties. Digital Elevation Model (ASTER DEM 30m) was used to derive excess surface run-off attributes including flow direction and accumulation. Based on these attributes, flood risk areas were determined and delineated using buffer distances of 500 meters. World View image (30 cm spatial resolution) was used to identify the landuses at risk. The result from the analysis delineated flood risk areas at varying exposure levels (i.e high, moderate and low).It was evident that flood risk level within the metropolis corresponds to the pattern of surface run-off flow accumulation areas. Settlements and farmlands found within high accumulation areas along the floodplains of River Jakara (in the North and North-eastern part) and Kano-Zaria road (southern part) are at higher risk than those found on low accumulation areas. The study concluded that excess surface run-off flow direction and accumulation are among the fundamental factors determining the risk to urban flooding. The study recommends that with the ongoing level of urban development and impervious surface expansion, urban planners and policy makers should make use of the flow direction and accumulation maps in determining safer places for future developments.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 521
Author(s):  
Frank K. Crundwell

The kinetics of the dissolution of salts and minerals remains a field of active research because these reactions are important to many fields, such as geochemistry, extractive metallurgy, corrosion, biomaterials, dentistry, and dietary uptake. A novel model, referred to as the surface-vacancy model, has been proposed by the author as a general mechanism for the primary events in dissolution. This paper expands on the underlying physical model while serving as an update on current progress with the application of the model. This underlying physical model envisages that cations and anions depart separately from the surface leaving a surface vacancy of charge opposite to that of the departing ion on the surface. This results in an excess surface charge, which in turn affects the rate of departing ions. Thus, a feedback mechanism is established in which the departing of ions creates excess surface charge, and this net surface charge, in turn, affects the rate of departure. This model accounts for the orders of reaction, the equilibrium conditions, the acceleration or deceleration of rate in the initial phase and the surface charge. The surface-vacancy model can also account for the effect of impurities in the solution, while it predicts phenomena, such as ‘partial equilibrium’, that are not contemplated by other models. The underlying physical model can be independently verified, for example, by measurements of the surface charge. This underlying physical model has implications for fields beyond dissolution studies.


2021 ◽  
Author(s):  
kamal ray ◽  
Aditya Limaye ◽  
Ankur Saha ◽  
Ka Chon Ng ◽  
Adam Willard ◽  
...  

<p>We use second harmonic generation spectroscopy, molecular dynamics simulation, and theoretical modeling to study the response of the neat liquid water-air interface to changes in the potential of an external electrode positioned above the liquid. We observe a parabolic dependence of second harmonic intensity on applied potential, indicating that water’s net interfacial dipole responds linearly. We also observe a minimum intensity when the potential is tuned to a specific positive value. Interpreting this minimum based on the macroscopic electrostatic potential profile yields misleading physical conclusions because it neglects the internal bias exerted on molecular orientations by the excess surface concentrations of OH<sup>-</sup> or H<sub>3</sub>O<sup>+</sup>. We thus find that water’s net interfacial dipole orientation is primarily responsive to the effects of these ionic species rather than the external electric field. </p>


2021 ◽  
Author(s):  
kamal ray ◽  
Aditya Limaye ◽  
Ankur Saha ◽  
Ka Chon Ng ◽  
Adam Willard ◽  
...  

<p>We use second harmonic generation spectroscopy, molecular dynamics simulation, and theoretical modeling to study the response of the neat liquid water-air interface to changes in the potential of an external electrode positioned above the liquid. We observe a parabolic dependence of second harmonic intensity on applied potential, indicating that water’s net interfacial dipole responds linearly. We also observe a minimum intensity when the potential is tuned to a specific positive value. Interpreting this minimum based on the macroscopic electrostatic potential profile yields misleading physical conclusions because it neglects the internal bias exerted on molecular orientations by the excess surface concentrations of OH<sup>-</sup> or H<sub>3</sub>O<sup>+</sup>. We thus find that water’s net interfacial dipole orientation is primarily responsive to the effects of these ionic species rather than the external electric field. </p>


2020 ◽  
Vol 6 (2) ◽  
pp. 10-19
Author(s):  
U. Mehta ◽  
S. K. Yadav ◽  
I. Koirala ◽  
D. Adhikari

Temperature-dependent interaction parameters for excess free energies of mixing of sub-binary systems of Al-Fe-Si ternary liquid alloys were optimised using the experiment data in the frame of Redlich-Kister (R-K) polynomials. These optimised parameters were then used to compute the partial excess free energy of sub-binary and ternary liquid alloys. The surface tension and surface concentration of sub-binary and the ternary liquid alloys were computed using Butler equation. The temperature dependent coefficients of R-K polynomials for excess surface tensions of the sub-binary systems were optimised which were then used to estimate the surface tension of ternary alloy using Chou, Kohler and Toop modelling equations at temperatures 1773, 1873, 1973 and 2073 K. The surface tension of the ternary alloy obtained using aforementioned models were found to be in good agreement from Fe and Al corners but some deviations were observed from Si corner.


Sign in / Sign up

Export Citation Format

Share Document