HSA-Cercanam®: A New Material with a Continuous Nanopore Network

2003 ◽  
Vol 788 ◽  
Author(s):  
A. Akash ◽  
B. Nair ◽  
K. Minnick ◽  
M. Wilson ◽  
J. Hartvigsen

ABSTRACTA novel nano-ceramic material, called HSA-CERCANAM®, which has a very high surface area with a nanopore network has been developed. HSA-CERCANAM® can be casted in various shapes and forms resulting in a monolithic piece that has surface area as high as 80–100 m2/g. The surface area and the nanopore network of HSA-CERCANAM® remains stable at temperatures as high as 1000°C. Furthermore, the unique nature of HSA-CERCANAM® allows it to be casted on and around features, either sacrificial or permanent. Using sacrificial features, microchannels can be incorporated internally into the monolithic HSA-CERCANAM® piece in a simple, one-step process. Further, this monolithic ceramic component, which has an intrinsically high surface area and a nanopore network, can be infiltrated with a desired catalyst. This could offer clear technological advantages over currently available microreactors. The surface area, porosity, catalyst type and infiltration levels are some of the ways in which tailored microstructures can be realized in components such as mixers, heat exchangers, extractors, filters or reaction chambers thereby leading to highly efficient, multi-functional ceramic micro-devices.

2010 ◽  
Vol 20 (11) ◽  
pp. 2092 ◽  
Author(s):  
Shu-Lei Chou ◽  
Jia-Zhao Wang ◽  
David Wexler ◽  
Konstantin Konstantinov ◽  
Chao Zhong ◽  
...  

2016 ◽  
Vol 23 (5) ◽  
pp. 1227-1237 ◽  
Author(s):  
Haribandhu Chaudhuri ◽  
Subhajit Dash ◽  
Ashis Sarkar

Holzforschung ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 367-374 ◽  
Author(s):  
Yuxiang Huang ◽  
Wenji Yu ◽  
Guangjie Zhao

AbstractA novel way to prepare mesoporous activated carbon fibers (ACFs-P) has been developed, while the ACFs-P with high surface area were obtained from liquefied wood by combining polyvinyl butyral (PVB) blending and steam activation. The porosity properties of the new material was investigated by N2adsorption and the Brunauer–Emmett–Teller (BET) surface area was found to be 2710 m2g−1and a pore volume of 1.540 cm3g−1, of which 58.2% was mesoporous with diameters between 3 and 6 nm. ACFs-P had a higher methylene blue (MB) adsorption capacity (962 mg/g) than the PVB-added carbon fibers (CFs-P) and ACFs-P without PVB (ACFs-C). Flexible all-carbon yarn supercapacitors can be produced from ACFs-P as powder or fiber. The fiber approach led to yarn supercapacitors with a less favorable electrochemical performance than the powder based production owing to the poor strength of the fibers. A 10 cm long yarn supercapacitor from the powdered ACFs exhibited a high specific length capacitance of 43 mF cm−1at 2 mV s−1. Yarn supercapacitors showed an excellent mechanical flexibility and its capacitor properties were not diminished after bending or crumpling.


2007 ◽  
Vol 19 (17) ◽  
pp. 4367-4372 ◽  
Author(s):  
Ajayan Vinu ◽  
Pavuluri Srinivasu ◽  
Dhanashri P. Sawant ◽  
Toshiyuki Mori ◽  
Katsuhiko Ariga ◽  
...  

1999 ◽  
Vol 15 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Yasushi Takeuchi ◽  
Mitsuharu Hino ◽  
Yukihiro Yoshimura ◽  
Toshiro Otowa ◽  
Hisatsugu Izuhara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document