Structural Characterization of Low-Temperature InN Buffer Layer Grown by RF-MBE

2003 ◽  
Vol 798 ◽  
Author(s):  
T. Araki ◽  
Y. Nanishi

ABSTRACTThe microstructure of an InN buffer layer grown on (0001) sapphire at low temperature by radio-frequency molecular beam epitaxy (RF-MBE) is characterized by transmission electron microscopy. The low-temperature InN buffer layer is found to contain local inhomogeneous regions of island-like grains surrounded by misoriented InN grains and inclusions of cubic phase. The generation of such anti-phase InN nuclei near the island-like grains is expected to give rise to defects at the interface. It is considered that these anti-phase InN nuclei are formed by local fluctuations of stoichiometry due to inadequate surface migration during the growth of the InN buffer layer, indicating the important of controlling the surface stoichiometry during InN growth.

1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


Author(s):  
B. Bourqui ◽  
P. A. Buffat ◽  
J.D. Ganière ◽  
F. K. Reinhart

Diffusion of impurities, such as zinc or silicon, enhances the intermixing of Ga-Al atoms at GaAs/AlGaAs interfaces. This process is useful to modify the bandedge properties of multilayered structures such as (AlxGa1-xAs/GaAs). Important technological applications are due to this effect. Information about electronic states of the disordered structure is directly obtained by photoluminescence. The impurity induced disordering depth is, usually, estimated either by scanning electron microscopy (SEM) or by secondary ion mass spectroscopy (SIMS). We used transmission electron microscopy on wedge shaped specimen (WTEM) is used to obtain local information on the disordering depth and to check the chemical homogeneities of the diffused samples.The multiquantum well structures (MQW) were grown by molecular beam epitaxy (MBE) on n doped [001] substrate at surface temperature of 600 °C. A specimen structure is given in Figure 1. Zinc diffusions were performed by using the sealed quartz tube method at 575°C. The ZnAs2 source provide sufficient partial pressure of arsine to maintain the surface at equilibrium.


2012 ◽  
Vol 725 ◽  
pp. 75-78
Author(s):  
Noriko Ohmori ◽  
Tomonori Uchimaru ◽  
Hiroyuki Fujimori ◽  
Jun Komiyama ◽  
Yoshihisa Abe ◽  
...  

The dislocations in GaN thin film with GaN/AlN multilayer (ML) as the buffer layer were evaluated using transmission electron microscopy. A high density of dislocations parallel to the GaN/ML interface and a sudden decrease in the dislocation density at the GaN/ML interface were found. Dislocation propagation in the direction parallel to the GaN/ML interface by turning horizontally on the GaN/ML interface is considered to be effective in decreasing the dislocation density at the top layer of GaN.


1993 ◽  
Vol 8 (11) ◽  
pp. 2753-2756 ◽  
Author(s):  
L.B. Rowland ◽  
R.S. Kern ◽  
S. Tanaka ◽  
Robert F. Davis

Single-crystal epitaxial films of cubic β(3C)–SiC(111) have been deposited on hexagonal α(6H)–SiC(0001) substrates oriented 3–4° toward [1120] at 1050–1250 °C via gas-source molecular beam epitaxy using disilane (Si2H6) and ethylene (C2H4). High-resolution transmission electron microscopy revealed that the nucleation and growth of the β(3C)–SiC regions occurred primarily on terraces between closely spaced steps because of reduced rates of surface migration at the low growth temperatures. Double positioning boundaries were observed at the intersections of these regions.


Sign in / Sign up

Export Citation Format

Share Document