Solidification Modeling of Bulk Amorphous Alloys

2003 ◽  
Vol 806 ◽  
Author(s):  
Sang Bok Lee ◽  
Nack J. Kim

ABSTRACTClassical heterogeneous nucleation theory coupled with DTA data has been used to closely estimate the crystallization behavior of continuously cooled bulk metallic glass (BMG) alloys. Continuous cooling transformation and time temperature transformation diagrams of three BMG alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and Mg65Cu25Y10 alloys, have been calculated. The critical cooling rates Rc of three alloys were calculated to be 1.7 K/s, 242 K/s and 36 K/s for Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and of Mg65Cu25Y10 alloys, respectively, which match well with the experimental values. We conclude that heterogeneous nucleation is more favorable than homogeneous nucleation for the formation of crystals during cooling of BMG alloy liquids. Our approach can be applied to the analyses of crystallization kinetics of BMG alloys with a wide range of critical cooling rates during continuous cooling as well as isothermal annealing.

The kinetics of the intracrystalline Fe-Mg exchange reaction in anthophyllite can be described by a simple model that permits extrapolation to lower temperatures. Rock cooling rates can be estimated in the vicinity of 300 °C from these data using time-temperature-transformation diagrams. Aluminous orthoamphiboles (gedrites) are expected to yield rock cooling rates at higher temperatures.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1515
Author(s):  
Jonathan Alms ◽  
Christian Hopmann ◽  
Jian Wang ◽  
Tobias Hohlweck

The modelling of the correlation between pressure, specific volume and temperature (pvT) of polymers is highly important for applications in the polymer processing of semi-crystalline thermoplastics, especially in injection moulding. In injection moulding, the polymer experiences a wide range of cooling rates, for example, 60 °C/min near the centre of the part and up to 3000 °C/min near the mould walls. The cooling rate has a high influence on the pvT behaviour, as was shown in the continuous two-domain pvT model (CTD). This work examined the Hoffman–Lauritzen nucleation and growth theory used in the modified Hammami model for extremely high cooling rates (up to 300,000 °C/min) by means of Flash differential scanning calorimeter (DSC) measurements. The results were compared to those of the empirical continuous two-domain pvT model. It is shown that the Hammami model is not suitable to predict the crystallisation kinetics of polypropylene at cooling rates above 600 °C/min, but that the continuous two-domain pvT model is well able to predict crystallisation temperatures at high cooling rates.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1562
Author(s):  
Zhenglei Tang ◽  
Ran Guo ◽  
Yang Zhang ◽  
Zhen Liu ◽  
Yuezhang Lu ◽  
...  

The expansion curves of the continuous cooling transformation of undercooled austenite of SXQ500/550DZ35 hydropower steel at different heating temperatures and cooling rates were measured by use of a DIL805A dilatometer. Combined with metallography and Vickers hardness measurement, the continuous cooling transformation diagrams (CCT) of the studied steel under two different states were determined. The results show that in the first group of tests, after the hot-rolled specimens were austenitized at 920 °C, when the cooling rate was below 1 °C·s−1, the microstructure was composed of ferrite (F), pearlite (P) and bainite (B). With the cooling rates between 1 °C·s−1 and 5 °C·s−1, the microstructure was mainly bainite, and martensite (M) formed as the cooling rate reached 5 °C·s−1. When the cooling rate was up to 10 °C·s−1, the microstructure was completely martensite and the hardness value increased significantly. In the second group of tests, after the hot-rolled specimens were quenched at 920 °C and then heated at an intercritical temperature of 830 °C, in comparison with the first group of tests, and except for additional undissolved ferrites in each cooling rate range, the other microstructure types were basically the same. Due to the existence of undissolved ferrite, the microstructures of the specimens heated at intercritical temperatures were much finer, and the toughness values at low temperatures were better.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1028 ◽  
Author(s):  
Adam Grajcar ◽  
Mateusz Morawiec ◽  
Wladyslaw Zalecki

The aim of the present study is to assess the effects of hot deformation and cooling paths on the phase transformation kinetics in a precipitation-strengthened automotive 0.2C–1.5Mn–0.5Si steel with Nb and Ti microadditions. The analysis of the precipitation processes was performed while taking into account equilibrium calculations and phase transitions resulting from calculated time–temperature–transformation (TTT) and continuous cooling transformation (CCT) diagrams. The austenite decomposition was monitored based on thermodynamic calculations of the volume fraction evolution of individual phases as a function of temperature. The calculations were compared to real CCT and DCCT (deformation continuous cooling transformation) diagrams produced using dilatometric tests. The research included the identification of the microstructure of the nondeformed and thermomechanically processed supercooled austenite products formed at various cooling rates. The complex interactions between the precipitation process, hot deformation, and cooling schedules are linked.


1991 ◽  
Vol 6 (5) ◽  
pp. 969-986 ◽  
Author(s):  
S. Djanarthany ◽  
C. Servant ◽  
R. Penelle

We have analyzed the phase relationships in two titanium aluminides containing 3.4 at. % Mo with different aluminum compositions. The alloys were first homogenized in the β field, then cooled continuously at different cooling rates from 80 °C/s to 0.1 °C/s. The continuous cooling transformation diagrams (CCT) show that phase transformations and resulting microstructures are highly dependent on cooling rate. The microstructure consists of ordered α2 (DO19), ordered β0 (B2), and athermal ω (hexagonal) phases. The “tweed microstructure” is observed. The evolution of microhardness was determined as well as the relative partitioning of Al and Mo in (α2', α2) and β0 phases as a function of cooling rate.


2020 ◽  
Vol 62 (1) ◽  
pp. 20
Author(s):  
И.В. Приходько ◽  
Г.Т. Гурия

The processes of receptors clustering on the surface of blood cells are considered in the nucleation theory framework. In the absence of ligands, the characteristic time of homogeneous nucleation of receptors clustering was assumed to be much longer than a cell's life. By varying the kinetics of the bonds' formation and breaking during receptor clustering, it was possible to describe the activation conditions experimentally observed for several types of blood cells. It was shown that the heterogeneous nucleation characteristic time leading to receptors clustering in the presence of exogenous ligands can be less than one minute. Parametric diagrams are constructed that display the effect of a number of examined ligands on the receptor system. The possible clinical significance of the results is discussed.


2016 ◽  
Vol 1812 ◽  
pp. 129-134 ◽  
Author(s):  
Gerardo Altamirano-Guerrero ◽  
Emmanuel J. Gutiérrez-Castañeda ◽  
Omar García-Rincón ◽  
Armando Salinas-Rodríguez

ABSTRACTThis article outlines the use of quenching dilatometry in phase transformation kinetics research in steels under continuous cooling conditions. For this purpose, the phase transformation behavior of a hot-rolled heat treatable steel was investigated over the cooling rate range of 0.1 to 200 °C/s. The start and finish points of the austenite transformation were identified from the dilatometric curves and then the continuous cooling transformation (CCT) diagrams were constructed. The experimental CCT diagrams were verified by microstructural characterization using scanning electron microscopy (SEM) and Vickers micro-hardness. In general, results revealed that the quenching dilatometry technique is a powerful tool for the characterization and study of solid-solid phase transformations in steels. For cooling rates between 200 and 25 °C/s the final microstructure consists on plate-like martensite with the highest hardness values. By contrast, a mixture of phases of ferrite, bainite and pearlite predominated for slower cooling rates (10-0.1 °C/s).


2016 ◽  
Vol 49 (2) ◽  
pp. 132-156 ◽  
Author(s):  
Ying-Guo Zhou ◽  
Wen-Bin Wu ◽  
Gui-Yun Lu ◽  
Jun Zou

Isothermal and non-isothermal crystallization kinetics of polycyclohexylene dimethylene cyclohexanedicarboxylate (PCCE) were investigated via differential scanning calorimetry (DSC). Isothermal melt crystallization kinetics were analyzed using the traditional Avrami equation. Non-isothermal melt crystallization kinetics data obtained from DSC were analyzed using the extended Avrami relation and a combination of the Avrami equation and the Ozawa relationship. The glass transition temperature, equilibrium melting point, isothermal crystallization activation energy, and non-isothermal crystallization activation energy were determined. Furthermore, a predictive method based on the Nakamura model was proposed and was used to describe the non-isothermal crystallization kinetics based on the isothermal experimental data. The results suggested that the original Nakamura equation was not successful in describing the non-isothermal crystallization of PCCE over a wide range of cooling rates. It was found that the non-isothermal crystallization kinetics of PCCE, over a wide range of cooling rates, could best be described by modifying the differential Nakamura equation to include a varied Avrami index.


Sign in / Sign up

Export Citation Format

Share Document