Structure of Cobalt Nanosphere Superlattice Films by Small Angle X-ray Scattering

2004 ◽  
Vol 818 ◽  
Author(s):  
Michael Beerman ◽  
Masato Ohnuma ◽  
Yuping Bao ◽  
Kannan M. Krishnan

AbstractCobalt nanocrystals, recently synthesized with narrow size distributions and controlled shapes, organize in a wide range of arrays as a function of shape, size and interparticle interactions. The nanocrystals (NCs) consist of a cobalt metal core with a nominal diameter of 11 nm, and an organic surfactant surface layer with a chain length of ∼1.7 nm. For the simplest case (ε-Co nanospheres, super-paramagnetic at room temperature) a hexagonal arrangement of NCs is observed in transmission electron microscope (TEM) images when precipitated from solution onto carbon films. For practical applications and for further understanding of the self-assembly process, long range order of the super lattice must be probed over regions that are greater in extent than may be examined by TEM. Hence, small angle x-ray scattering (SAXS) measurements were performed on cobalt nanospheres randomly dispersed in solution and assembled on glass substrates. Least squares fit to the intensity distribution as a function of the scattering vector q gave an average particle diameter of 11.0 ± 0.8 nm. Structure factor contribution to the intensity profile agrees well with a quasi-random model for scattering from a face centered cubic (FCC) superlattice composed of uniform radius cobalt spheres. The measured nearest neighbor interparticle spacing, 14.1 nm, agrees to within 2% of the predicted value of 14.4 nm based on a free energy model that governs the self-assembly of the nanoparticle system.

2020 ◽  
Vol 17 (8) ◽  
pp. 2809-2820
Author(s):  
Lasse Sander Dreyer ◽  
Jesper Nygaard ◽  
Leila Malik ◽  
Thomas Hoeg-Jensen ◽  
Rasmus Høiberg-Nielsen ◽  
...  

2018 ◽  
Vol 74 (a2) ◽  
pp. e270-e270
Author(s):  
Tsang-Lang Lin ◽  
Yuan Hu ◽  
Ru-Kuei Lin ◽  
Ching-Hsun Yang ◽  
Po-Wei Yang ◽  
...  

2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


Biochemistry ◽  
2013 ◽  
Vol 52 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Malene Hillerup Jensen ◽  
Per-Olof Wahlund ◽  
Katrine Nørgaard Toft ◽  
Jes Kristian Jacobsen ◽  
Dorte Bjerre Steensgaard ◽  
...  

2018 ◽  
Vol 51 (3) ◽  
pp. 867-882 ◽  
Author(s):  
Jan Ilavsky ◽  
Fan Zhang ◽  
Ross N. Andrews ◽  
Ivan Kuzmenko ◽  
Pete R. Jemian ◽  
...  

Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS) facility has been transformed by several new developments. These comprise a conversion to higher-order crystal optics and higher X-ray energies as the standard operating mode, rapid fly scan measurements also as a standard operational mode, automated contiguous pinhole small-angle X-ray scattering (SAXS) measurements at intermediate scattering vectors, and associated rapid wide-angle X-ray scattering (WAXS) measurements for X-ray diffraction without disturbing the sample geometry. With each mode using the USAXS incident beam optics upstream of the sample, USAXS/SAXS/WAXS measurements can now be made within 5 min, allowingin situandoperandomeasurement capabilities with great flexibility under a wide range of sample conditions. These developments are described, together with examples of their application to investigate materials phenomena of technological importance. Developments of two novel USAXS applications, USAXS-based X-ray photon correlation spectroscopy and USAXS imaging, are also briefly reviewed.


Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7634-7647 ◽  
Author(s):  
Kirti Sankhala ◽  
D. C. Florian Wieland ◽  
Joachim Koll ◽  
Maryam Radjabian ◽  
Clarissa Abetz ◽  
...  

A study of the self-assembly of block copolymers in ordered and weakly segregated solutions after extrusion during fabrication of isoporous hollow fiber membranes.


Small ◽  
2019 ◽  
Vol 15 (20) ◽  
pp. 1900438 ◽  
Author(s):  
Irina Lokteva ◽  
Michael Koof ◽  
Michael Walther ◽  
Gerhard Grübel ◽  
Felix Lehmkühler

Sign in / Sign up

Export Citation Format

Share Document