Influence of stress on structural and dielectric anomaly of Bi2(Zn1/3Ta2/3)207 thin films

2005 ◽  
Vol 875 ◽  
Author(s):  
Jun Hong Noh ◽  
Hee Bum Hong ◽  
Kug Sun Hong

AbstractBi2(Zn1/3Ta2/3)2O7 (BZT) thin films were grown on the (111) oriented Pt/TiOx/SiO2/Si substrates using a pulsed laser deposition (PLD) technique. BZT thin films deposited at an oxygen partial pressure of 400 mTorr have the non-stoichiometric anomalous cubic phase despite the BZT target was the monoclinic phase. Compositions, the lattice mismatch, the interfacial layer and the residual stress in the film were investigated as the factors which may affect the formation of the anomalous cubic phase. Among them, the coherent interfacial layer which formed at high oxygen pressures resulted in the formation of the cubic phase by reducing the internal stress.

2005 ◽  
Vol 87 (24) ◽  
pp. 241504 ◽  
Author(s):  
S. Dhar ◽  
M. S. Ramachandra Rao ◽  
S. B. Ogale ◽  
Darshan C. Kundaliya ◽  
S. R. Shinde ◽  
...  

1991 ◽  
Vol 243 ◽  
Author(s):  
C. K. Chiang ◽  
W. Wong-Ng ◽  
L. P. Cook ◽  
P. K. Schenck ◽  
H. M. Lee ◽  
...  

AbstractPZT thin films were prepared by pulsed laser deposition on unheated Ptcoated Si substrates. As deposited, the films were amorphous. Films crystallized at 550 - 600 °C to produce predominantly crystalline ferroelectric PZT. Crystallization of the amorphous material was accompanied by a linear shrinkage of ∼2 %, as manifested in development of cracks in the film. Spacing, width and morphology of larger cracks followed a regular progression with decreasing film thickness. For film thicknesses less than 500 runm, much of the shrinkage was taken up by small, closely-spaced cracks of local extent. Implications for measurement of PZT thin film ferroelectric properties and processing are discussed.


2014 ◽  
Vol 633 ◽  
pp. 378-381
Author(s):  
Bei Li ◽  
X.B. Liu ◽  
M. Chen ◽  
X.A. Mei

Dy-doped Bi4Ti3O12 thin films were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition technique, and the structures and electrical properties of the films were investigated. XRD results indicated that all of Bi4-xDyxTi3O12 films consisted of single phase of a bismuth-layered structure with well-developed rod-like grains. The remanent polarization ( Pr ) and coercive field (Ec) of the Bi4-xDyxTi3O12 Film with x=0.75 were 25μC/cm2 and 85KV/cm , respectively.


1999 ◽  
Vol 574 ◽  
Author(s):  
D. Kumar ◽  
K. G. Cho ◽  
Zhang Chen ◽  
V. Craciun ◽  
P. H. Holloway ◽  
...  

AbstractThe growth, structural and cathodoluminescent (CL) properties of europium activated yttrium oxide (Eu:Y2O3) thin films are reported. The Eu:Y2O3 films were grown in-situ using a pulsed laser deposition technique. Our results show that Eu:Y2O3 films can grow epitaxially on (100) LaAlO3 substrates under optimized deposition parameters. The epitaxial growth of Eu:Y2O3 films on LaAlO3, which has a lattice mismatch of ∼ 60 %, is explained by matching of the atom positions in the lattices of the film and the substrate after a rotation. CL data from these films are consistent with highly crystalline Eu:Y2O3 films with an intense CL emission at 611 nm.


2019 ◽  
Vol 6 (10) ◽  
pp. 106421
Author(s):  
Guankong Mo ◽  
Jiahui Liu ◽  
Guotao Lin ◽  
Zhuoliang Zou ◽  
Zeqi Wei ◽  
...  

2004 ◽  
Vol 829 ◽  
Author(s):  
S. P. Heluani ◽  
G. Simonelli ◽  
M. Villafuerte ◽  
G. Juarez ◽  
A. Tirpak ◽  
...  

ABSTRACTStructural and electronic transport properties of polycrystalline ZnO thin films, prepared by pulsed laser deposition, have been investigated. The films were deposited on glass and Si3N4/Si substrates using O2 and N2 atmospheres. X-ray analysis revealed preferential c-axis orientation perpendicular to the sample substrate. Films deposited under relatively high O2 pressure were highly resistive. However, the conductivity σ increased while the films were irradiated with ultraviolet light, showing an Arrhenius (In σ ∝ T-1) dependence as a function of temperature. The ZnO film deposited in N2 atmosphere exhibited at room temperature a resistivity ∼ 1 Ω cm, and a sheet carrier concentration ∼ 5 1012 cm-2. The variation of the conductivity with temperature, in the range 60 – 150 K, follows a In σ ∝ T-1/4 dependence characteristic of variable range hopping. An analysis of the experimental results of conductivity as a function of temperature, in terms of possible doping effects, as well as conduction mechanisms is presented.


Sign in / Sign up

Export Citation Format

Share Document