Interactions of Ge Atoms with High- ê Oxide Dielectric Surfaces

2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.

2005 ◽  
Vol 863 ◽  
Author(s):  
P. Ryan Fitzpatrick ◽  
Sri Satyanarayana ◽  
Yangming Sun ◽  
John M. White ◽  
John G. Ekerdt

AbstractBlanket porous methyl silsesquioxane (pMSQ) films on a Si substrate were studied with the intent to seal the pores and prevent penetration of a metallic precursor during barrier deposition. The blanket pMSQ films studied were approximately 220 nm thick and had been etched and ashed. When tantalum pentafluoride (TaF5) is exposed to an unsealed pMSQ sample, X-ray photoelectron spectroscopy (XPS) depth profiling and secondary ion mass spectroscopy (SIMS) depth profiling reveal penetration of Ta into the pores all the way to the pMSQ / Si interface. Boron carbo-nitride films were grown by thermal chemical vapor deposition (CVD) using dimethylamine borane (DMAB) precursor with Ar carrier gas and C2H4 coreactant. These films had a stoichiometry of BC0.9N0.07 and have been shown in a previous study to have a k value as low as 3.8. BC0.9N0.07 films ranging from 1.8 to 40.6 nm were deposited on pMSQ and then exposed to TaF5 gas to determine the extent of Ta penetration into the pMSQ. Ta penetration was determined by XPS depth profiling and sometimes SIMS depth profiling. XPS depth profiling of a TaF5 / 6.3 nm BC0.9N0.07 / pMSQ / Si film stack indicates the attenuation of the Ta signal to < 2 at. % throughout the pMSQ. Backside SIMS of this sample suggests that trace amounts of Ta (< 2 at. %) are due to knock-in by Ar ions used for sputtering. An identical film stack containing 3.9 nm BC0.9N0.07 was also successful at inhibiting Ta penetration even with a 370°C post-TaF5 exposure anneal, suggesting the stability of BC0.9N0.07 to thermal diffusion of Ta. All BC0.9N0.07 films thicker than and including 3.9 nm prevented Ta from penetrating into the pMSQ.


2004 ◽  
Vol 830 ◽  
Author(s):  
Scott K. Stanley ◽  
Shawn S. Coffee ◽  
John G. Ekerdt

ABSTRACTGeH4 is thermally cracked over a hot filament depositing 0.7–15 ML Ge onto 2–7 nm SiO2/Si(100) at substrate temperatures of 300–970 K. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300–1000 K. Ge bonding changes are analyzed during annealing from 300–1000 K with X-ray photoelectron spectroscopy (XPS). Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 700 K. Germanium oxidization results from Ge etching of the oxide substrate, which is demonstrated through XPS. Ge nanoparticle formation on SiO2 is demonstrated using the agglomeration process. With these results, explanations for the difficulties of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.


2016 ◽  
Vol 879 ◽  
pp. 2032-2037 ◽  
Author(s):  
Gabriele Lapi ◽  
Carlo Alvani ◽  
Francesca Varsano ◽  
Saulius Kaciulis ◽  
Roberto Montanari ◽  
...  

The present work investigates the effect of heat treatments in air on the surface and structure of titanium hydride (TiH2) and hydrogen desorption. TiH2 has been heated in air at 440 and 540 °C for increasing time up to 180 min. to obtain the samples representative of 12 different oxidation conditions. The samples have been then examined by Temperature Programmed Desorption (TPD), X-Ray Diffraction (XRD) and Photoelectron Spectroscopy (XPS). Experimental results are presented and discussed.


Langmuir ◽  
1999 ◽  
Vol 15 (11) ◽  
pp. 3993-3997 ◽  
Author(s):  
G. S. Herman ◽  
Y. J. Kim ◽  
S. A. Chambers ◽  
C. H. F. Peden

Sign in / Sign up

Export Citation Format

Share Document