Interatomic Potentials for Atomistic Simulations

MRS Bulletin ◽  
1996 ◽  
Vol 21 (2) ◽  
pp. 17-19 ◽  
Author(s):  
Arthur F. Voter

Atomistic simulations are playing an increasingly prominent role in materials science. From relatively conventional studies of point and planar defects to large-scale simulations of fracture and machining, atomistic simulations offer a microscopic view of the physics that cannot be obtained from experiment. Predictions resulting from this atomic-level understanding are proving increasingly accurate and useful. Consequently, the field of atomistic simulation is gaining ground as an indispensable partner in materials research, a trend that can only continue. Each year, computers gain roughly a factor of two in speed. With the same effort one can then simulate a system with twice as many atoms or integrate a molecular-dynamics trajectory for twice as long. Perhaps even more important, however, are the theoretical advances occurring in the description of the atomic interactions, the so-called “interatomic potential” function.The interatomic potential underpins any atomistic simulation. The accuracy of the potential dictates the quality of the simulation results, and its functional complexity determines the amount of computer time required. Recent developments that fit more physics into a compact potential form are increasing the accuracy available per simulation dollar.This issue of MRS Bulletin offers an introductory survey of interatomic potentials in use today, as well as the types of problems to which they can be applied. This is by no means a comprehensive review. It would be impractical here to attempt to present all the potentials that have been developed in recent years. Rather, this collection of articles focuses on a few important forms of potential spanning the major classes of materials bonding: covalent, metallic, and ionic.

2019 ◽  
Vol 49 (1) ◽  
pp. 389-415 ◽  
Author(s):  
Haidan Wen ◽  
Mathew J. Cherukara ◽  
Martin V. Holt

X-ray microscopy has been an indispensable tool to image nanoscale properties for materials research. One of its recent advances is extending microscopic studies to the time domain to visualize the dynamics of nanoscale phenomena. Large-scale X-ray facilities have been the powerhouse of time-resolved X-ray microscopy. Their upgrades, including a significant reduction of the X-ray emittance at storage rings (SRs) and fully coherent ultrashort X-ray pulses at free-electron lasers (FELs), will lead to new developments in instrumentation and will open new scientific opportunities for X-ray imaging of nanoscale dynamics with the simultaneous attainment of unprecedentedly high spatial and temporal resolutions. This review presents recent progress in and the outlook for time-resolved X-ray microscopy in the context of ultrafast nanoscale imaging and its applications to condensed matter physics and materials science.


1984 ◽  
Vol 106 (2) ◽  
pp. 310-317 ◽  
Author(s):  
R. L. Alpert

Turbulent, recirculating gas flows resulting from interactions of water droplet sprays with large-scale buoyancy sources are difficult to predict without the use of numerical techniques, especially when spray-induced gas motion is considered. One such flow occurs when a negatively buoyant methane cloud, generated during LNG spills in a wind, is dispersed by a line water spray. Numerical predictions of the ratio of average methane vapor concentration downwind of the line spray to the upwind value correlate as a function of the ratio of methane momentum in the vapor cloud to water momentum in the spray. Warming of the cloud, which occurs when small drops in the spray freeze, leads to the production of positive cloud buoyancy and the possibility of cloud lift off from the ground. Numerical calculations have also been used to predict how a near-ceiling, downward-directed spray interacts with an opposed, buoyant jet issuing from floor level. Recirculating gas motion induced by droplet trajectories is again an important part of the problem. This opposed spray-plume arrangement, which is important in the process of fire suppression by automatic sprinklers, allows the effectiveness of spray cooling of the near-ceiling environment to be determined as a function of droplet injection characteristics. Because of the excessive amounts of computer time required for the solution of both turbulent, buoyant flow problems, it is concluded that much more efficient numerical techniques are needed.


2014 ◽  
Vol 16 (27) ◽  
pp. 14150-14160 ◽  
Author(s):  
Anastasia Gulenko ◽  
Olivier Masson ◽  
Abid Berghout ◽  
David Hamani ◽  
Philippe Thomas

This article derives the interatomic potential for the TeO2 system and presents the first results of molecular dynamics simulations of the pure TeO2 structure.


Nanoscale ◽  
2021 ◽  
Author(s):  
Daniele Dragoni ◽  
Jörg Behler ◽  
Marco Bernasconi

Large scale atomistic simulations with an interatomic potential generated by a machine learning method have been exploited to study the crystallization of Sb in ultrathin films.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongqi Wen ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

AbstractLarge scale atomistic simulations provide direct access to important materials phenomena not easily accessible to experiments or quantum mechanics-based calculation approaches. Accurate and efficient interatomic potentials are the key enabler, but their development remains a challenge for complex materials and/or complex phenomena. Machine learning potentials, such as the Deep Potential (DP) approach, provide robust means to produce general purpose interatomic potentials. Here, we provide a methodology for specialising machine learning potentials for high fidelity simulations of complex phenomena, where general potentials do not suffice. As an example, we specialise a general purpose DP method to describe the mechanical response of two allotropes of titanium (in addition to other defect, thermodynamic and structural properties). The resulting DP correctly captures the structures, energies, elastic constants and γ-lines of Ti in both the HCP and BCC structures, as well as properties such as dislocation core structures, vacancy formation energies, phase transition temperatures, and thermal expansion. The DP thus enables direct atomistic modelling of plastic and fracture behaviour of Ti. The approach to specialising DP interatomic potential, DPspecX, for accurate reproduction of properties of interest “X”, is general and extensible to other systems and properties.


1988 ◽  
Vol 141 ◽  
Author(s):  
Eduardo J. Savino ◽  
R. Pasianot

AbstractWe briefly discuss some of the advantages and limitations of using embedded atom interatomic potentials for simulating the static configuration and dynamics of lattice defects. In metals, the embedded atom potentials provide a physically more realistic approximation than simple pair interaction potentials without a significant increase in computer time needed for defect simulation studies. However, in some cases, n-body shear forces, i.e bond angle interatomic forces may be needed for fitting experimental results related to defect configuration. One such example is the elastic neutron scattering data from N interstitials in Nb [1]. Also, such bond angle forces must be included in a realistic model of atomic interactions in metals, expecially in highly anisotropic bee transition metals. Extending the concept of the embedded atom method, we propose a new form for the interatomic potential in metals which includes bond angle forces. General expressions for the elastic constants in bee and fee structures are deduced.


1997 ◽  
Vol 3 (4) ◽  
pp. 333-338 ◽  
Author(s):  
R. Benedek ◽  
D.N. Seidman ◽  
L.H. Yang

Abstract: Atomistic simulations were performed for the {222}MgO/Cu interface by local density functional theory (LDFT) methods, within the plane-wave-pseudopotential representation, and by (classical) molecular dynamics and statics. The electronic spectra obtained with LDFT calculations showed a localized interface state within the bulk MgO gap, approximately 1 eV above the MgO valence band edge. LDFT adhesive energy calculations, as a function of interface spacing and translations parallel to the interface, were employed to devise an interatomic potential suitable for large-scale atomistic simulation. The interface structure, which was obtained with molecular dynamics (and statics) calculations based on the resultant potential, exhibited a misfit dislocation network with trigonal symmetry, and no standoff dislocations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexey Odinokov ◽  
Alexander Yakubovich ◽  
Won-Joon Son ◽  
Yongsik Jung ◽  
Hyeonho Choi

AbstractThe computational design of functional materials relies heavily on large-scale atomistic simulations. Such simulations are often problematic for conventional classical force fields, which require tedious and time-consuming parameterization of interaction parameters. The problem can be solved using a quantum mechanically derived force field (QMDFF)—a system-specific force field derived directly from the first-principles calculations. We present a computational approach for atomistic simulations of complex molecular systems, which include the treatment of chemical reactions with the empirical valence bond approach. The accuracy of the QMDFF is verified by comparison with the experimental properties of liquid solvents. We illustrate the capabilities of our methodology to simulate functional materials in several case studies: chemical degradation of material in organic light-emitting diode (OLED), polymer chain packing, material morphology of organometallic photoresists. The presented methodology is fast, accurate, and highly automated, which allows its application in diverse areas of materials science.


2020 ◽  
Vol 11 (17) ◽  
pp. 6946-6955 ◽  
Author(s):  
Ryosuke Jinnouchi ◽  
Kazutoshi Miwa ◽  
Ferenc Karsai ◽  
Georg Kresse ◽  
Ryoji Asahi

Sign in / Sign up

Export Citation Format

Share Document