scholarly journals A pathway to desired functionalities in vertically aligned nanocomposites and related architectures

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Aiping Chen ◽  
Quanxi Jia

AbstractEpitaxial vertically aligned nanocomposites (VANs) and their related architectures have shown many intriguing features that are not available from conventional two-dimensional planar multilayers and heterostructures. The ability to control constituent, interface, microstructure, strain, and defects based on VANs has enabled the multiple degrees of freedom to manipulate the optical, magnetic, electrochemical, electronic, ionic, and superconducting properties for specific applications. This field has rapidly expanded from the interest in oxide:oxide to oxide:metal, metal:nitride and nitride:nitride systems. To achieve unparalleled properties of the materials, three-dimensional super-nanocomposites based on a hybrid of VAN and multilayer architectures have been recently explored as well. The challenges and opportunities of VAN films are also discussed in this article.

Author(s):  
Jianmin Xu ◽  
Zhaohong Song

This paper is about blade flutter in a tuned rotor. With the aid of the combination of three dimensional structural finite element method, two dimensional aerodynamical finite difference method and strip theory, the quasi-steady models in which two degrees of freedom for a single wing were considered have been extended to multiple degrees of freedom for the whole blade in a tuned rotor. The eigenvalues solved from the blade motion equation have been used to judge whether the system is stable or not. The calculating procedure has been formed and using it the first stage rotating blades of a compressor where flutter had occurred, have been predicted. The numerical flutter boundaries have good agreement with the experimental ones.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Qi Wen ◽  
Qi Chen ◽  
Qungui Du ◽  
Yong Yang

Misalignment errors (MEs) in multiple degrees of freedom (multi-DOFs) at the mesh position will lead to a change in the time-varying mesh stiffness (TVMS) and then affect the dynamic behaviour of gear pairs. Therefore, a new, more rapid, three-dimensional analytical model for TVMS calculation for gear pairs with three rotational and three translational MEs is established in this paper, and a new solution method based on potential energy theory is presented. In addition, the correctness of the new model is verified by the finite element method (FEM). Moreover, the effective contact line, uneven distribution of mesh force on the contact line, and mesh position change are taken into account. Finally, the TVMS under different ME conditions is calculated with the new analytical model. The results showed that the different MEs have dissimilar effects on the TVMS, and the relationship between the ME and TVMS is nonlinear. In addition, the region of single-pair and double-pair teeth in contact would also change with ME.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850066
Author(s):  
Payel Mukhopadhyay ◽  
K. Rajesh Nayak

Carter's constant is a nontrivial conserved quantity of motion of a particle moving in stationary axisymmetric spacetime. In the version of the theorem originally given by Carter, due to the presence of two Killing vectors, the system effectively has two degrees of freedom. We propose an extension to the first version of Carter's theorem to a system having three degrees of freedom to find two functionally independent Carter-like integrals of motion. We further generalize the theorem to a dynamical system with [Formula: see text] degrees of freedom. We further study the implications of Carter's constant to superintegrability and present a different approach to probe a superintegrable system. Our formalism gives another viewpoint to a superintegrable system using the simple observation of separable Hamiltonian according to Carter's criteria. We then give some examples by constructing some two-dimensional superintegrable systems based on this idea and also show that all three-dimensional simple classical superintegrable potentials are also Carter separable.


Author(s):  
Dmitry Chalikov ◽  
Alexander V. Babanin

An exact numerical scheme for a long-term simulation of three-dimensional potential fully-nonlinear periodic gravity waves is suggested. The scheme is based on a surface-following non-orthogonal curvilinear coordinate system and does not use the technique based on expansion of the velocity potential. The Poisson equation for the velocity potential is solved iteratively. The Fourier transform method, the second-order accuracy approximation of the vertical derivatives on a stretched vertical grid and the fourth-order Runge-Kutta time stepping are used. The scheme is validated by simulation of steep Stokes waves. The model requires considerable computer resources, but the one-processor version of the model for PC allows us to simulate an evolution of a wave field with thousands degrees of freedom for hundreds of wave periods. The scheme is designed for investigation of the nonlinear two-dimensional surface waves, for generation of extreme waves as well as for the direct calculations of a nonlinear interaction rate. After implementation of the wave breaking parameterization and wind input, the model can be used for the direct simulation of a two-dimensional wave field evolution under the action of wind, nonlinear wave-wave interactions and dissipation. The model can be used for verification of different types of simplified models.


2020 ◽  
Vol 62 (4) ◽  
pp. 603
Author(s):  
Д.А. Конюх ◽  
Я.М. Бельтюков

The random matrix theory is applied to describe the vibrational properties of two-dimensional disordered systems with a large number of degrees of freedom. It is shown that the most significant mechanical properties of amorphous solids can be taken into account using the correlated Wishart ensemble. In this ensemble, an excess vibrational density of states over the Debye law is observed as a peak in the reduced density of states g(ω)/ω. Such a peak is known as the boson peak, which was observed in many experiments and numerical simulations for two-dimensional and three-dimensional disordered systems. It is shown that two-dimensional systems have a number of differences in the asymptotic behavior of the boson peak.


2015 ◽  
Vol 3 (20) ◽  
pp. 10787-10794 ◽  
Author(s):  
Guofeng Ren ◽  
Md Nadim Ferdous Hoque ◽  
Xuan Pan ◽  
Juliusz Warzywoda ◽  
Zhaoyang Fan

Assembling two-dimensional graphene and VO2(B) nanomaterials into an ordered three-dimensional forest structure for high performance lithium ion batteries.


1994 ◽  
Vol 72 (3) ◽  
pp. 1171-1180 ◽  
Author(s):  
J. Hore ◽  
S. Watts ◽  
D. Tweed

1. Overarm throwing is a skilled multijoint movement with potentially many degrees of freedom. Considering only the arm > or = 7 degrees of freedom are involved (shoulder 3, elbow 2, wrist 2). For each arm segment 3 degrees of freedom are potentially required to specify its angular position (orientation) at any moment during a throw. Simplification of the control problem for the CNS would occur if there were constraints on these degrees of freedom. The objective was to determine whether such constraints exist at ball release when throwing at targets in different directions using only the arm. 2. The angular positions in three dimensions of the distal phalanx of the middle finger, the hand, the forearm, and the upper arm were simultaneously recorded with search coils as subjects sat with a fixed trunk and threw balls at nine targets in an approximate +/- 40 degree work space. Ball release was signaled by microswitches on the proximal and distal phalanges of the middle finger (proximal and distal triggers). 3. On throwing at any one target the hand at ball release adopted a similar orientation for each throw, i.e., for a particular vertical and horizontal angular position the hand adopted a similar torsional position. On throwing at targets throughout the work space, angular position (rotation) vectors describing hand positions in space at ball release were confined to a two-dimensional surface rather than a three-dimensional volume. This constraint in hand torsion occurred near and at ball release but not throughout the entire throw. It was not due to mechanical factors because such a surface was not obtained when subjects deliberately twisted their arms when throwing. Thus at ball release during a "natural" throw the hand was constrained to 2 of its possible 3 angular degrees of freedom. 4. The same constraint was also found for finger, forearm, and upper arm angular positions in space at ball release as determined at both the proximal and distal triggers. A consequence is that at ball release the entire arm was constrained to 2 of its possible 7 degrees of freedom. 5. The two-dimensional position vector surface for each arm segment was similar to that obtained when pointing with a straight arm at the same targets. In both cases they showed torsion and were twisted like the surface obtained by rotations around the horizontal and vertical axes of a Fick gimbal. However, in some subjects the throwing surfaces were tilted from the vertical.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document