scholarly journals Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications

Author(s):  
S. Sanders ◽  
G. Simkus ◽  
J. Riedel ◽  
A. Ost ◽  
A. Schmitz ◽  
...  

AbstractCsPbBr3 represents a highly attractive material for perovskite light-emitting diodes (PeLEDs) in the green spectral range. However, the lack of deposition tools for reproducible and scalable growth of perovskite films is one of the major obstacles hindering PeLED commercialization. Here, we employ the highly scalable showerhead-assisted chemical vapor deposition (CVD) method to produce uniform pinhole-free CsPbBr3 films for PeLED application. The precursors CsBr and PbBr2 are evaporated under low vacuum in N2 carrier gas. By adjusting the PbBr2 sublimation temperature, process conditions for CsBr-rich, stoichiometric, and PbBr2-rich CsPbBr3 layer growth have been developed. A substrate temperature of 160 °C enables direct growth of these CsPbBr3 films on a polymeric hole transport layer (HTL), finally yielding PeLEDs with a maximum luminance of 125 cd/m2. Although the device efficiency still lags behind solution-processed counterparts, our approach presents the first demonstration of PeLEDs containing CsPbBr3 films processed in a perovskite showerhead-assisted CVD reactor. Graphic abstract

Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


Author(s):  
Xiaokun Huang ◽  
Rainer Bäuerle ◽  
Felix Scherz ◽  
Jean-Nicolas Tisserant ◽  
Wolfgang Kowalsky ◽  
...  

We demonstrate a simple and effective way to enhance the performance of perovskite light-emitting diodes (PeLEDs) by utilizing an alkali halide doped PEDOT:PSS as the hole transport layer (HTL). The...


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


2014 ◽  
Vol 104 (7) ◽  
pp. 073111 ◽  
Author(s):  
Chun-Yuan Huang ◽  
I-Wen Peter Chen ◽  
Chih-Jung Chen ◽  
Ray-Kuang Chiang ◽  
Hoang-Tuan Vu

2010 ◽  
Vol 108 (4) ◽  
pp. 043105 ◽  
Author(s):  
A. A. González Fernández ◽  
M. Aceves Mijares ◽  
A. Morales Sánchez ◽  
K. M. Leyva

Sign in / Sign up

Export Citation Format

Share Document