scholarly journals Vortex Pattern on a Fixed Reynold’s Number with Varying Aspect Ratio, and Vice Versa in a Lid Driven Square Cavity

Author(s):  
A. Baba ALIYU ◽  
◽  
Zubairu BELLO ◽  
Ayigun SUNDAY ◽  
◽  
...  
2014 ◽  
Vol 695 ◽  
pp. 384-388
Author(s):  
Nor Azwadi Che Sidik ◽  
A.S. Ahmad Sofianuddin ◽  
K.Y. Ahmat Rajab

In this paper, Constrained Interpolated Profile Method (CIP) was used to simulate contaminants removal from square cavity in channel flow. Predictions were conducted for the range of aspect ratios from 0.25 to 4.0. The inlet parabolic flow with various Reynolds number from 50 to 1000 was used for the whole presentation with the same properties of contaminants and fluid. The obtained results indicated that the percentage of removal increased at high aspect ratio of cavity and higher Reynolds number of flow but it shows more significant changes as increasing aspect ratio rather than increasing Reynolds number. High removal rate was found at the beginning of the removal process.


2018 ◽  
Vol 1139 ◽  
pp. 012082
Author(s):  
S.A. Qasem ◽  
S. Sivasankaran ◽  
Z. Siri ◽  
W.A.M. Othman

2019 ◽  
Vol 18 (2) ◽  
pp. 98
Author(s):  
E. D. dos Santos ◽  
P. M. Rodrigues ◽  
L. A. Isoldi ◽  
J. F. Prolo Filho ◽  
L. A. O. Rocha ◽  
...  

In this work, it is investigated the geometric effect of rectangular fin inserted in a lid-driven square cavity over thermal performance of laminar, incompressible, steady and forced convective flows. This study is performed by applying Constructal Design to maximize the heat transfer between the fin and the cavity flow. For that, the problem is subjected to two constraints: area of the cavity and area of rectangular fin, and two degrees of freedom: height/length ratio of rectangular fin (H1/L1) and its position in upstream surface of the cavity (S/A1/2). It is considered here some fixed parameters, as the ratio between the fin and cavity areas (ϕ = 0.05), the aspect ratio of the cavity dimensions (H/L = 1.0) and Prandtl number (Pr = 0.71). The fin aspect ratio (H1/L1) was varied for three different placements of the fin at the upstream cavity surface (S/A1/2 = 0.1, 0.5 and 0.9) which represents a lower, intermediate and upper positions of the fin. The effects of the fin geometry over the spatial-averaged Nusselt number ( ) is investigated for three different Reynolds numbers (ReH = 10, 102 and 103). The conservation equations of mass, momentum and energy were numerically solved with the Finite Volume Method. Results showed that both degrees of freedom (H1/L1 and S/A1/2) had a strong influence over , mainly for higher magnitudes of Reynolds number. Moreover, the best thermal performance is reached when the fin is placed near the upper surface of the cavity for an intermediate ratio between height and length of rectangular fin, more precisely when (S/A1/2)o = 0.9 and (H1/L1)oo = 2.0.


2007 ◽  
Vol 129 (12) ◽  
pp. 1723-1728 ◽  
Author(s):  
M. Sathiyamoorthy ◽  
Tanmay Basak ◽  
S. Roy ◽  
N. C. Mahanti

The present numerical investigation deals with steady natural convection flow in a closed square cavity when the bottom wall is sinusoidal heated and vertical walls are linearly heated, whereas the top wall is well insulated. In the nonuniformly heated bottom wall maximum temperature TH attains at the center of the bottom wall. The sidewalls are linearly heated, maintained at minimum temperature Tc at top edges of the sidewalls and at temperature Th at the bottom edges of the sidewalls, i.e., Tc≤Th≤TH. Nonlinear coupled PDEs governing the flow have been solved by the penalty finite element method with biquadratic rectangular elements. Numerical results are obtained for various values of Prandtl number (Pr)(0.01≤Pr≤10) and temperature difference aspect ratio A=[(Th−Tc)∕(TH−Tc)](0≤A≤1) for higher Raleigh number Ra=105. Results are presented in the form of streamlines, isotherm contours, local Nusselt number, and the average Nusselt number as a function of temperature difference aspect ratio A. The overall heat transfer process is shown to be tuned efficiently with suitable selection of A.


2007 ◽  
Vol 73 (726) ◽  
pp. 544-551
Author(s):  
Shiki OKAMOTO ◽  
Yoko YAMANISHI ◽  
Fumiaki MURAYAMA ◽  
Takashi MIMA ◽  
Satoshi ESHIMA

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
G. Lorenzini ◽  
C. Biserni ◽  
L. A. O. Rocha

The aim of this paper is to consider, by means of the numerical investigation, the geometric optimization of a cavity that intrudes into a solid with internal heat generation. The objective is to minimize the maximal dimensionless excess of temperature between the solid and the cavity. The cavity is rectangular, with fixed volume and variable aspect ratio. The cavity shape is optimized for two sets of boundary conditions: isothermal cavity and cavity cooled by convection heat transfer. The optimal cavity is the one that penetrates almost completely the conducting wall and proved to be practically independent of the boundary thermal conditions, for the external ratio of the solid wall smaller than 2. As for the convective cavity, it is worthy to know that for values of H/L greater than 2, the best shape is no longer the one that penetrates completely into the solid wall, but the one that presents the largest cavity aspect ratio H0/L0. Finally, when compared with the optimal cavity ratio calculated for the isothermal C-shaped square cavity, the cavities cooled by convection highlight almost the same optimal shape for values of the dimensionless group λ ≤ 0.01. Both cavities, isothermal and cooled by convection, also present similar optimal shapes for ϕ0 < 0.3 and ϕ0 > 0.7. However, in the range 0.3 ≤ ϕ0 ≤ 0.7, the ratio (H0/L0)opt calculated for the cavities cooled by convection is greater than the one presented by isothermal cavities. This difference is approximately 17% when λ = 0.1 and ϕ0 = 0.7, and 20% for λ = 1 and ϕ0 = 0.5.


Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
H.-W. Dai ◽  
Liwu Fan

Computational analysis of transient phenomenon followed by the periodic state of laminar flow and heat transfer due to a rectangular rotating object in a square cavity is investigated. A finite-volume-based fixed-grid/sliding mesh computational methodology utilizing primitive variables is used. Rectangular rotating objects with different aspect ratios (AR = 1, 2, 3, 4) are placed in the middle of a square cavity. The motionless object is set in rotation at time t = 0 with a constant angular velocity. For the insulated and isothermal objects, the cavity is maintained as differentially-heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow field is not affected by the Taylor instabilities (Ta &lt; 1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners and the periodic channelling effect of the traversing vertices are clearly elucidated. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasi-periodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated to the rotational Reynolds number and the aspect ratio of the rectangle. For high Re numbers, the performance of the system is independent of the aspect ratio. On the other hand, with lowering of the hydraulic diameter (i.e. bigger objects), objects with the highest and lowest aspect ratios exhibit the highest and lowest heat transfer, respectively. High intensity of the periodic channelling and not its frequency are identified as the cause of the observed enhancement.


2007 ◽  
Vol 12 (2) ◽  
pp. 203-212 ◽  
Author(s):  
P. Kandaswamy ◽  
J. Lee ◽  
A. K. Abdul Hakeem

Natural convection heat transfer in a square cavity induced by heated plate is studied numerically. Top and bottom of the cavity are adiabatic, the two vertical walls of the cavity have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved by finite difference method using Alternating Direction Implicit technique and Successive OverRelaxation method. The study was performed for different values of Grashof number ranging from 103 to 105 for different aspect ratios and position of heated plate. Air was chosen as a working fluid (Pr = 0.71). The effect of the position and aspect ratio of heated plate on heat transfer and flow were addressed. With increase of Gr heat transfer rate increased in both vertical and horizontal position of the plate. When aspect ratio of heated thin plate is decreased the heat transfer also decreases. For the vertical situation of thin plate heat transfer becomes more enhanced than for horizontal situation.


Sign in / Sign up

Export Citation Format

Share Document