scholarly journals GEOMETRICAL EVALUATION OF RECTANGULAR FIN MOUNTED IN LATERAL SURFACE OF LID-DRIVEN CAVITY FORCED CONVECTIVE FLOWS

2019 ◽  
Vol 18 (2) ◽  
pp. 98
Author(s):  
E. D. dos Santos ◽  
P. M. Rodrigues ◽  
L. A. Isoldi ◽  
J. F. Prolo Filho ◽  
L. A. O. Rocha ◽  
...  

In this work, it is investigated the geometric effect of rectangular fin inserted in a lid-driven square cavity over thermal performance of laminar, incompressible, steady and forced convective flows. This study is performed by applying Constructal Design to maximize the heat transfer between the fin and the cavity flow. For that, the problem is subjected to two constraints: area of the cavity and area of rectangular fin, and two degrees of freedom: height/length ratio of rectangular fin (H1/L1) and its position in upstream surface of the cavity (S/A1/2). It is considered here some fixed parameters, as the ratio between the fin and cavity areas (ϕ = 0.05), the aspect ratio of the cavity dimensions (H/L = 1.0) and Prandtl number (Pr = 0.71). The fin aspect ratio (H1/L1) was varied for three different placements of the fin at the upstream cavity surface (S/A1/2 = 0.1, 0.5 and 0.9) which represents a lower, intermediate and upper positions of the fin. The effects of the fin geometry over the spatial-averaged Nusselt number ( ) is investigated for three different Reynolds numbers (ReH = 10, 102 and 103). The conservation equations of mass, momentum and energy were numerically solved with the Finite Volume Method. Results showed that both degrees of freedom (H1/L1 and S/A1/2) had a strong influence over , mainly for higher magnitudes of Reynolds number. Moreover, the best thermal performance is reached when the fin is placed near the upper surface of the cavity for an intermediate ratio between height and length of rectangular fin, more precisely when (S/A1/2)o = 0.9 and (H1/L1)oo = 2.0.

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
G. Lorenzini ◽  
B. S. Machado ◽  
L. A. Isoldi ◽  
E. D. dos Santos ◽  
L. A. O. Rocha

The present work shows a numerical study of laminar, steady, and mixed convective flow inside lid-driven square cavity with intruded rectangular fin in its lower surface. The main purpose here is to maximize the heat transfer between the rectangular fin and the surrounding mixed convective flow inside a lid-driven cavity by means of constructal design. The problem is subject to two constraints, the lid-driven cavity and intruded fin areas. The ratio between the fin and cavity areas is kept fixed (ϕ = 0.05). The investigated geometry has one degree-of-freedom (DOF), the fin aspect ratio (H1/L1), which is varied in the range 0.1 ≤ H1/L1 ≤ 10. The aspect ratio of the cavity is maintained fixed (H/L = 1.0). The effect of the fin geometry over the Nusselt number is investigated for several Rayleigh (RaH = 103, 104, 105 and 106) and Reynolds numbers (ReH = 10, 102, 3.0 × 102, 5.0 × 102, 7.0 × 102 and 103). For all simulations, the Prantdl number is fixed (Pr = 0.71). The conservation equations of mass, momentum, and energy are numerically solved with the finite volume method. Results showed that fin geometry (H1/L1) has strong influence over the Nusselt number in the fin. It was also observed that the effect of H1/L1 over Nusselt number changes considerably for different Rayleigh numbers and for the lowest magnitudes of Reynolds numbers, for example, differences of nearly 770% between RaH = 106 and forced convective flow were observed for the lowest Reynolds number studied (ReH = 10).


2017 ◽  
Vol 372 ◽  
pp. 188-201 ◽  
Author(s):  
Andre L. Razera ◽  
Tadeu M. Fagundes ◽  
Flávio M. Seibt ◽  
Roberta J.C. da Fonseca ◽  
Dolir J.C. Varela ◽  
...  

The present work applies Constructal Design to study numerically a fin-cavity system under mixed convection flow. The system is composed of a heat triangular fin inserted in a squared cavity. The flow is driven by the superior wall (lid) displacement. The main purpose is to study the effect of the fin geometry and area ratio (φ) over the dimensionless convective heat transfer coefficient (Nusselt number). The effect of Rayleigh (RaH) and Reynolds (ReH) numbers over the thermal performance and optimal geometries is also evaluated. For all cases the Prandtl number is constant (Pr = 0.71). The conservation equations of mass, momentum and energy are solved numerically with a code based in the Finite Volume Method (FVM). Results showed that the thermal performance increased with the increase of Reynolds and Rayleigh numbers and with the decrease of fin area ratio (φ). Otimal geometries for the triangular fin are compared to optimal rectangular fins, for RaH = 105 results showed a better performance (up to 8%) of the triangular fin for low Reynolds numbers (ReH < 200), while rectangular fins performed better than triangular ones for the highest magnitudes of ReH numbers. In general, results showed that different conditions change the optimal shape of a flow system, always evolving to architectures that facilitate the access to the flows that flow through it.


2019 ◽  
Vol 18 (1) ◽  
pp. 57
Author(s):  
A. P. D. Aghenese ◽  
F. B. Teixeira ◽  
L. A. O. Rocha ◽  
L. A. Isoldi ◽  
J. F. Prolo Filho ◽  
...  

This work presents a numerical study on the geometric evaluation of forced convective flows over four staggered arrangement of four cylinders. The forced convective flow is considered incompressible, two-dimensional, laminar and unsteady. Geometry varies according to Constructal Design method. The objectives are the maximization of Nusselt number (NuD) and minimization of drag coefficient (CD) between the cylinders and the surrounding flow. Simulations were performed considering Reynolds numbers of ReD = 10, 40 and 150 and air as working fluid, i.e., Prandtl number is assumed Pr = 0.71. The problem presents three degrees of freedom: ST/D (ratio between transversal pitch of the intermediate cylinders and the cylinders diameter), SL1/D (ratio between the frontal and intermediate cylinders longitudinal pitch and the cylinders diameter) and SL2/D (ratio between the intermediate and posterior cylinders longitudinal pitch and the cylinders diameter). However, SL1/D and SL2/D measures were kept fixed at 1.5 and ST/D varies in the range 1.5 ≤ ST/D ≤ 5.0. The conservation equations of mass, momentum and energy conservation are solved with the Finite Volume Method (FVM). Optimal results for fluid-dynamic study in all ReD cases occurred for the lowest values of ST/D, i.e., (ST/D)o,f = 1.5. For thermal analysis, NuD behavior was assessed, where optimal results for ReD = 10 and 40 occurred for the highest values of ST/D, whilst, for ReD = 150, the optimal value was achieved for the intermediate ratio of ST/D = 4.0.


2020 ◽  
Vol 14 (3) ◽  
pp. 7269-7281
Author(s):  
El Amin Azzouz ◽  
Samir Houat

The two-dimensional asymmetrical flow in a two-sided lid-driven square cavity is numerically analyzed by the finite volume method (FVM). The top and bottom walls slide in parallel and antiparallel motions with various velocity ratio (UT/Ub=λ) where |λ|=2, 4, 8, and 10. In this study, the Reynolds number Re1 = 200, 400, 800 and 1000 is applied for the upper side and Re2 = 100 constant on the lower side. The numerical results are presented in terms of streamlines, vorticity contours and velocity profiles. These results reveal the effect of varying the velocity ratio and consequently the Reynolds ratio on the flow behaviour and fluid characteristics inside the cavity. Unlike conventional symmetrical driven flows, asymmetrical flow patterns and velocity distributions distinct the bulk of the cavity with the rising Reynolds ratio. For λ>2, in addition to the main vortex, the parallel motion of the walls induces two secondary vortices near the bottom cavity corners. however, the antiparallel motion generates two secondary vortices on the bottom right corner. The parallel flow proves affected considerably compared to the antiparallel flow.


Author(s):  
K. M. Akyuzlu ◽  
J. Farkas

An experimental study was conducted to observe/visualize, the formation of circulation patterns inside a square cavity due to the movement of a lid at constant velocity. Lid driven cavity flow is one of the benchmark studies used in the verification/improvement of CFD codes for internal flow applications/predictions. Previous work on this topic is primarily focused on improving the steady state predictions of the CFD codes using different numerical schemes and algorithms. Furthermore, almost all of the studies reported in computational fluid mechanics literature relates to steady state predictions of lid or shear driven flows. Experimental work that is reported in these studies is limited in scope and number. This paper reports on the measurements we made using Particle Image Velocimeter (PIV) technique to determine the flow field as it develops from stagnation to steady state inside a square cavity driven by a lid. For this purpose, we employed a 2-D PIV system, which uses a double-cavity, Nd:Yag laser to illuminate the test cavity. Experiments were conducted using water as the working fluid inside a square cavity that is one inch (25.4 mm) high and one inch wide. The depth of the cavity is five inches (127 mm) to ensure two-dimensional circulations patterns. Hollow glass sphere particles with 10 microns in diameter were used as seeding of the working fluid, water. Experiments were repeated for different lid velocities corresponding to lid Reynolds numbers (laminar to beginning of transition of turbulence.) Velocity fields were captured during the development of the circulations patters each being unique for the time of the measurement and value of the lid velocity. The center of the circulation pattern and its path inside the cavity is constructed from the captured images as steady state is attained. Also, the strength of the circulation (as manifested by the increase in the diameter of the circulation) is determined at different times for different Reynolds numbers.


2020 ◽  
Vol 330 ◽  
pp. 01009
Author(s):  
El Amin Azzouz ◽  
Samir Houat

The two-dimensional flow in a two-sided lid-driven cavity is often handled numerically for the same imposed wall velocities (symmetrical driving) either for parallel or antiparallel wall motion. However, in this study, we present a finite volume method (FVM) based on the second scheme of accuracy to numerically explore the steady two-dimensional flow in a two-sided lid-driven square cavity for antiparallel wall motion with different imposed wall velocities (asymmetrical driving). The top and the bottom walls of the cavity slide in opposite directions simultaneously at different velocities related to various imposed velocity ratios, λ = -2, -6, and -10, while the two remaining vertical walls are stationary. The results show that varying the velocity ratio and consequently the Reynolds ratios have a significant effect on the flow structures and fluid properties inside the cavity.


Author(s):  
Yevgenii A. Rastigejev ◽  
Samuel Paolucci

We present a new wavelet-based adaptive multiresolution representation (WAMR) algorithm for the numerical solution of multiscale evolution problems. Key features of the algorithm are fast procedures for grid rearrangement, computation of derivatives, as well as the ability to minimize the degrees of freedom for a prescribed solution accuracy. To demonstrate the efficiency and accuracy of the algorithm, we use it to solve the two-dimensional benchmark problem of incompressible fluid-flow in a lid-driven cavity at large Reynolds numbers. The numerical experiments demonstrate the great ability of the algorithm to adapt to different scales at different locations and at different times so as to produce accurate solutions at low computational cost. Specifically, we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom.


2015 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
V. A. Pedrotti ◽  
J. A. Souza ◽  
E. D. Dos Santos ◽  
L. A. Isoldi

In this work a tubular array (four tubes) subjected to a transverse forced flow is analyzed in terms of thermal performance. Taking into account that there are two main assembles usually used in heat exchanger equipment (aligned and staggered), and that there exist an uncountable number of possible assembles for an array of tubes, present work proposes to use the Constructal Theory to build an optimized assemble. The distance between tubes (p), and the region where tubes can be positioned are the geometric constraint of the problem. Four values for p were considered: p = 1.25D (tube diameter), p = 1.5D, p = 2D, p is free (no restriction). Fluid flow is considered bi-dimensional, incompressible and laminar with ReD = 10 and Pr = 0.71. Mass, momentum and energy equations were solved by the Finite Volume Method (FVM) using FLUENT software. Geometry creation and mesh generation were performed with GMSH software while VISIT software was used for the post processing. Results have shown that imposing no restriction to tube positioning do not necessarily lead to best system thermal performance. In this particular study, setting p = 2D has resulted in best thermal performance.


2019 ◽  
Vol 396 ◽  
pp. 164-173 ◽  
Author(s):  
Priscila M. Rodrigues ◽  
Cicero C. de Escobar ◽  
Luiz Alberto Oliveira Rocha ◽  
Liércio André Isoldi ◽  
Elizaldo Domingues dos Santos

In this work, a numerical study of a flow with heat transfer by mixed convection are carried out. The objective is the geometric evaluation through the application of the Construtal Design and the exhaustive search method. The behavior of a lid-driven cavity with stable stratification subjected to an incompressible, laminar and two-dimensional flow is investigated. The cavity has two rectangular fins inserted in the lower surface. The problem is subject to three constrains: three geometric constraints: the area of the cavity, two fin areas. The investigated geometry has three degrees of freedom: the ratio between height and cavity length (H/L) and the ratio between height and length of each fin (H1/L1 and H2/L2). The effect of the fin geometry over spatial-averaged Nusselt (NuH) is investigated for Reynolds number (ReH) = 400 and Richardson (Ri) = 0.1. The conservation equations of mass, momentum and energy are tackled with Finite Volume Method (FVM) through the use of commercial software FLUENT. The results showed that the lower H2/L2 ratios resulted in higher NuH values. An increase in NuH value of approximately 49% between the worst and the best geometrical configuration was found, thus highlighting the importance of geometric evaluation on this kind of problem. It is concluded that for the problem addressed the best behavior is obtained when the fins have a small insertion into the cavity, thus avoiding the restriction of the main vortex flow. The results found highlight the importance of the geometric evaluation for the purpose of theoretical recommendation on the geometric configurations that lead to the best thermal performance.


2019 ◽  
Vol 396 ◽  
pp. 22-31
Author(s):  
Yuri T.B. Lima ◽  
Mateus das Neves Gomes ◽  
Camila F. Cardozo ◽  
Liércio André Isoldi ◽  
Elizaldo D. Santos ◽  
...  

This paper presents a biphasic two-dimensional numerical study of sea wave energy converters with operating principle being Oscillating Water Column (CAO) devices with two couples chambers. For the study of the geometric optimization, the Constructal Design method is applied in association with the exhaustive search method to determine the geometric arrangement that leads to the greatest hydropneumatic power available. The objective function is the maximization of hydropneumatic power converted by the device. The constraints of the problem are the inflow volumes of the hydropneumatic chamber (VE1, VE2), the total volumes (VT1, VT2) and the thicknesses of the device columns (e1, e3). The degrees of freedom analyzed were H1/L1(ratio between height and length of the hydropneumatic chamber of the first device), H2/L2 (ratio between height and length of the hydropneumatic chamber of the second device), H2 (height of the column dividing the two devices) and e2 (thickness of the column dividing the devices). In the present work the degree of freedom H6 (depth of immersion of the device) is kept constant and equal to H6 = 9.86 m. The Finite Volume Method (FVM) was used in the numerical solution of the equations employed. For the treatment of the interaction between the air and water phases, the Volume of Fluid (VOF) method was applied. The results show that the maximum hydropneumatic power available was 5715.2 W obtained for degrees of freedom H1/L1 = H2/L2 = 0.2613 and e2 = 2.22 m. The case of lower performance has a power value equal to 4818.5 W with degrees of freedom equal to H1/L1 = H2/L2 = 0.2613 and e2 = 0.1 m.


Sign in / Sign up

Export Citation Format

Share Document