scholarly journals Experimental development of approaches to reduce the slagging and corrosive activity of salty coal

2020 ◽  
Vol 6 (6 (108)) ◽  
pp. 124-133
Author(s):  
Tatiana Shendrik ◽  
Nataliya Dunayevska ◽  
Anatoly Tsaryuk ◽  
Valery Ielagin ◽  
Anton Fateyev
Author(s):  
Gomes Acg ◽  
Lima Mcpm ◽  
Caliari M ◽  
Alves Dg ◽  
Machado Alb ◽  
...  

Due to the technological importance that the extrusion process represents in the application of fast food, the objective of this work was to apply pregelatinized rice and sorghum flours in the development of an instant preparation soup and to evaluate its centesimal, technological, and their sensorial analysis. Ten formulations of the instant soup were prepared from the mixtures experimental design. According to the experimental results, it can be stated that the predicted values corroborated with the experimental values, that is, a mixture was obtained for the instant soup with the characteristics of water absorption, water solubility, color, luminosity and viscosity close to the predicted by the models. After the physical and chemical analysis, the microbiological characterization of the best formulation defined by the desirability test was used, which demonstrated that the product is suitable to microbiological standards. The results obtained showed that the 80:10:10 instant soup formulation of pregelatinized rice flour, pregelatinized sorghum flour and potato starch allowed the experimental development of a new product with good nutritional characteristics benefits. It was obtained a food with good technological characteristics solubility and absorption in water, good viscosity, light color and with good sensory acceptance by the tasters.


2021 ◽  
Vol 230 ◽  
pp. 111209
Author(s):  
Laura Carlosena ◽  
Ángel Andueza ◽  
Luis Torres ◽  
Olatz Irulegi ◽  
Rufino J. Hernández-Minguillón ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 286
Author(s):  
Jin Zhang ◽  
Lv Yang ◽  
Yue Wang ◽  
Huaichao Wu ◽  
Jiabin Cai ◽  
...  

Molecular dynamics (MD) simulations were conducted to investigate the interactions between a palygorskite coating and linear chain alkanes (dodecane C12, tetradecane C14, hexadecane C16, and octadecane C18), representing base oils in this study. The simulation models were built by placing the alkane molecules on the surface of the palygorskite coating. These systems were annealed and geometrically optimized to obtain the corresponding stable configurations, followed by the analysis of the structural changes occurring during the MD process. The interfacial interaction energies, mean square displacements, and self-diffusion coefficients of the systems were evaluated to characterize the interactions between base lubricant molecules and palygorskite coating. It was found that the alkanes exhibited self-arrangement ability after equilibrium. The interfacial interaction was attractive, and the electrostatic energy was the main component of the binding energy. The chain length of the linear alkanes had a significant impact on the intensity of the interfacial interactions and the molecular diffusion behavior. Moreover, the C12 molecule exhibited higher self-diffusion coefficient values than C14, C16 and C18. Therefore, it could be the best candidate to form an orderliness and stable lubricant film on the surface of the palygorskite coating. The present work provides new insight into the optimization of the structure and composition of coatings and lubricants, which will guide the experimental development of these systems for practical applications.


2010 ◽  
Vol 73 ◽  
pp. 36-40 ◽  
Author(s):  
Ana Morán ◽  
Rubén Coto ◽  
Javier Belzunce ◽  
Jose Manuel Artímez

<span><span style="font-family: Times New Roman;">Ferritic/Martensitic steels, with chromium contents ranging between 9 and 12%, were introduced into fusion material programs due to their better creep resistance and excellent thermal and nuclear properties compared to austenitic stainless steels. Reduced activation ferritic/martensitic (RAFM) steels are considered promising candidates for the test blanket modules of the future International Thermonuclear Experimental Reactor (ITER), being EUROFER steel is the EU reference material. It is a 9 % Cr RAFM steel which exhibits a tempered martensitic <span style="font-family: Times New Roman;">microstructure and presently allows operation up to 550 </span><span style="font-family: Cambria Math;">⁰</span><span style="font-family: Times New Roman;">C. This paper shows the work carried out</span></span><span style="font-family: Times New Roman;"><span style="font-family: Times New Roman;"> to develop at a pilot plant scale a Reduced Activation Ferritic/Martensitic (RAFM) steel, Asturfer </span><span style="font-family: Times New Roman; font-size: xx-small;"><span style="font-family: Times New Roman; font-size: xx-small;">®</span></span><span style="font-family: Times New Roman;">,</span></span><span style="font-family: Times New Roman;"> with chemical composition and mechanical properties very close to EUROFER steel. </span>


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1357 ◽  
Author(s):  
Simon Hirzel ◽  
Tim Hettesheimer ◽  
Peter Viebahn ◽  
Manfred Fischedick

New energy technologies may fail to make the transition to the market once research funding has ended due to a lack of private engagement to conclude their development. Extending public funding to cover such experimental developments could be one way to improve this transition. However, identifying promising research and development (R&D) proposals for this purpose is a difficult task for the following reasons: Close-to-market implementations regularly require substantial resources while public budgets are limited; the allocation of public funds needs to be fair, open, and documented; the evaluation is complex and subject to public sector regulations for public engagement in R&D funding. This calls for a rigorous evaluation process. This paper proposes an operational three-staged decision support system (DSS) to assist decision-makers in public funding institutions in the ex-ante evaluation of R&D proposals for large-scale close-to-market projects in energy research. The system was developed based on a review of literature and related approaches from practice combined with a series of workshops with practitioners from German public funding institutions. The results confirm that the decision-making process is a complex one that is not limited to simply scoring R&D proposals. Decision-makers also have to deal with various additional issues such as determining the state of technological development, verifying market failures or considering existing funding portfolios. The DSS that is suggested in this paper is unique in the sense that it goes beyond mere multi-criteria aggregation procedures and addresses these issues as well to help guide decision-makers in public institutions through the evaluation process.


Sign in / Sign up

Export Citation Format

Share Document