scholarly journals Numerical simulation of gas-dynamic processes in gas-dynamic tunnel

Author(s):  
Andrey Efremov ◽  
◽  
Aleksey Timarov ◽  
2003 ◽  
Vol 37 (5) ◽  
pp. 297-301
Author(s):  
A. P. Tishin ◽  
I. T. Goryunov ◽  
Yu. L. Gus'kov ◽  
D. A. Barshak ◽  
G. V. Presnov ◽  
...  

1999 ◽  
Vol 40 (1) ◽  
pp. 63-68 ◽  
Author(s):  
V. I. Borisenko ◽  
M. A. Kutischev ◽  
V. P. Mukoid

2015 ◽  
Vol 53 (4) ◽  
pp. 558-563 ◽  
Author(s):  
E. A. Sosnin ◽  
A. N. Korzenev ◽  
S. M. Avdeev ◽  
D. K. Volkind ◽  
G. S. Novakovskii ◽  
...  

Author(s):  
G. O. Voropaiev ◽  
Ia. V. Zagumennyi ◽  
N. V. Rozumnyuk

The paper presents the numerical results on gas-dynamic processes in various elements of the impulse ejector, including pre-chamber, supersonic nozzle and mixing chamber, to determine optimal geometric parameters providing the given flow rate characteristics. At an extra-high pressure of the ejecting gas (>100 bar) it is impossible to create a nozzle design with continuously changing cross-sectional area and limited nozzle length. So, it is necessary to place a pre-chamber between the gas generator and the ejector nozzle for throttling full gas pressure. In order to optimize the pre-chamber parameters in the ejector with discrete holes of the gas generator and the operating pressure in the range of 400÷1000 bar, a series of calculations were performed to determine the pre-chamber parameters, ensuring stable operation of the supersonic annular nozzle at the high pressure of 35÷45 bar and the flow rate of 0.5÷0.6 kg/s. 3D numerical simulation of the gas flow into the pre-chamber through the gas generator holes shows the degree of the flow pattern non-uniformity in the pre-chamber at the ejector nozzle inlet is quite low. This justifies the numerical simulation of gas flow in the ejector in axisymmetric formulation and allows restricting the number of the gas generator holes without inducing significant non-uniformity in the azimuthal direction.


2021 ◽  
Vol 11 (11) ◽  
pp. 4990
Author(s):  
Boris Benderskiy ◽  
Peter Frankovský ◽  
Alena Chernova

This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed.


Sign in / Sign up

Export Citation Format

Share Document