scholarly journals The Physical Interaction between Nucleotide-Binding Oligomerization Domain Containing 2 and Leucine-Rich Repeat Kinase 2

2020 ◽  
Vol 26 (1) ◽  
pp. 47-50
Author(s):  
Ji-A Jung ◽  
Sangwook Park
2021 ◽  
Vol 22 (8) ◽  
pp. 3986
Author(s):  
Xue Wang ◽  
Qiumin Chen ◽  
Jingnan Huang ◽  
Xiangnan Meng ◽  
Na Cui ◽  
...  

Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber’s yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.


FEBS Journal ◽  
2020 ◽  
Vol 287 (10) ◽  
pp. 2055-2069
Author(s):  
Min‐Young Kwon ◽  
Narae Hwang ◽  
Sung Hoon Back ◽  
Seon‐Jin Lee ◽  
Mark A. Perrella ◽  
...  

2011 ◽  
Vol 193 (4) ◽  
pp. 1049-1063 ◽  
Author(s):  
Jia-Xing Yue ◽  
Blake C. Meyers ◽  
Jian-Qun Chen ◽  
Dacheng Tian ◽  
Sihai Yang

Sign in / Sign up

Export Citation Format

Share Document