Correlation Between Oxygen Consumption and Photobleaching During In Vitro Photodynamic Treatment with ATX-S10·Na(II) Using Pulsed Light Excitation: Dependence of Pulse Repetition Rate and Irradiation Time¶

2004 ◽  
Vol 80 (2) ◽  
pp. 216 ◽  
Author(s):  
Satoko Kawauchi ◽  
Shunichi Sato ◽  
Yuji Morimoto ◽  
Makoto Kikuchi
2022 ◽  
Vol 52 (1) ◽  
pp. 69-77
Author(s):  
A V Belikov ◽  
S N Smirnov ◽  
Yu N Batov ◽  
A B Gubin ◽  
Yu B Pirozhkov ◽  
...  

Abstract Laser extraction of a model porcine eye cataract has been performed for the first time in an in vitro experiment using a 1.54-μm Yb,Er : glass laser generating bursts of microsecond pulses. We used effective pulse repetition rates from 36 to 75 Hz and average laser output powers from 3.9 to 5.25 W. The results demonstrate for the first time that, at an effective pulse repetition rate of 45 Hz, burst repetition rate of 15 Hz, three microsecond pulses per burst, and a burst energy from 260 to 265 mJ, the laser step duration in cataract extraction is 130 plusmn; 10 s, which is comparable to the ultrasonic phacoemulsification and laser extraction time in the case of a Nd : YAG laser emitting at 1.44 μm. Acoustometry and high speed video recording of hydroacoustic processes accompanying interaction of water with 1.54-μm radiation from the Yb, Er : glass laser generating bursts of microsecond pulses have made it possible for the first time to detect overlap of hydroacoustic processes at the pulse spacing in bursts reduced to under 700 μs. In the case of overlap of hydroacoustic processes, despite the increase in average power and effective pulse repetition rate, acoustic wave generation is ineffective because pulses propagate through bubbles formed in the water. Laser cataract extraction is shown to be most effective at a lower average power, lower effective pulse repetition rate, and burst pulse spacing of 850 ± 10 μs.


Author(s):  
Bing Zhang ◽  
Michael A. J. Moser ◽  
Edwin M. Zhang ◽  
Jim Xiang ◽  
Wenjun Zhang

The purpose of this study was to investigate the feasibility of generating larger ablation volumes using the pulse delivery method in irreversible electroporation (IRE) using a potato model. Ten types of pulse timing schemes and two pulse repetition rates (1 pulse per 200 ms and 1 pulse per 550 ms) were proposed in the study. Twenty in vitro experiments with five samples each were performed to check the effects on the ablation volumes for the ten pulse timing schemes and two pulse repetition rates. At the two pulse repetition rates (1 pulse per 200 ms and 1 pulse per 550 ms), the largest ablation volumes achieved were 1634.1 mm3± 122.6 and 1828.4 mm3±160.9, respectively. Compared with the baseline approach (no pulse delays), the ablation volume was increased approximately by 62.8% and 22.6% at the repetition rates of 1 pulse per 200 ms and 1 pulse per 550 ms, respectively, using the pulse timing approach (with pulse delays). With the pulse timing approach, the ablation volumes generated at the lower pulse repetition rate were significantly larger than those generated at the higher pulse repetition rate (P < 0.001). For the experiments with one pulse train (baseline approach), the current was 5.2 A±0.4. For the experiments with two pulse trains, the currents were 6.4 A±0.9 and 6.8 A±0.9, respectively (P = 0.191). For the experiments with three pulse trains, the currents were 6.6 A±0.6, 6.9 A±0.6, and 6.5 A±0.6, respectively (P = 0.216). For the experiments with five pulse trains, the currents were 6.6 A±0.9, 6.9 A±0.9, 6.5 A±1.0, 6.5 A±1.0, and 5.7 A±1.2, respectively (P = 0.09). This study concluded that: (1) compared with the baseline approach used clinically, the pulse timing approach is able to increase the volume of ablation; but, the pulse timing scheme with the best performance might be various with the tissue type; (2) the pulse timing approach is still effective in achieving larger ablation volumes when the pulse repetition rate changes; but, the best pulse timing scheme might be different with the pulse repletion rate; (3) the current in the base line approach was significantly smaller than that in the pulse timing approach.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1553
Author(s):  
Alexey Rybaltovsky ◽  
Evgeniy Epifanov ◽  
Dmitriy Khmelenin ◽  
Andrey Shubny ◽  
Yuriy Zavorotny ◽  
...  

Two approaches are proposed for the synthesis of bimetallic Au/Ag nanoparticles, using the pulsed laser ablation of a target consisting of gold and silver plates in a medium of supercritical carbon dioxide. The differences between the two approaches related to the field of “green chemistry” are in the use of different geometric configurations and different laser sources when carrying out the experiments. In the first configuration, the Ag and Au targets are placed side-by-side vertically on the side wall of a high-pressure reactor and the ablation of the target plates occurs alternately with a stationary “wide” horizontal beam with a laser pulse repetition rate of 50 Hz. In the second configuration, the targets are placed horizontally at the bottom of a reactor and the ablation of their parts is carried out by scanning from above with a vertical “narrow” laser beam with a pulse repetition rate of 60 kHz. The possibility of obtaining Ag/Au alloy nanoparticles is demonstrated using the first configuration, while the possibility of obtaining “core–shell” bimetallic Au/Ag nanoparticles with a gold core and a silver shell is demonstrated using the second configuration. A simple model is proposed to explain the obtained results.


2000 ◽  
Vol 30 (9) ◽  
pp. 783-786 ◽  
Author(s):  
V M Borisov ◽  
A Yu Vinokhodov ◽  
V A Vodchits ◽  
A V El'tsov ◽  
A S Ivanov

Sign in / Sign up

Export Citation Format

Share Document